Comparison of many-objective evolutionary algorithms using performance metrics ensemble

Abstract In this study, we have thoroughly researched on performance of six state-of-the-art Multiobjective Evolutionary Algorithms (MOEAs) under a number of carefully crafted many-objective optimization benchmark problems. Each MOEA apply different method to handle the difficulty of increasing objectives. Performance metrics ensemble exploits a number of performance metrics using double elimination tournament selection and provides a comprehensive measure revealing insights pertaining to specific problem characteristics that each MOEA could perform the best. Experimental results give detailed information for performance of each MOEA to solve many-objective optimization problems. More importantly, it shows that this performance depends on two distinct aspects: the ability of MOEA to address the specific characteristics of the problem and the ability of MOEA to handle high-dimensional objective space.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[3]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[4]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[5]  Qingfu Zhang,et al.  Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes , 2011, EMO.

[6]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[7]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Kalyanmoy Deb,et al.  Handling many-objective problems using an improved NSGA-II procedure , 2012, 2012 IEEE Congress on Evolutionary Computation.

[9]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[10]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[12]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Gary G. Yen,et al.  Performance Metric Ensemble for Multiobjective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[15]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[18]  Shengxiang Yang,et al.  A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization , 2013, EMO.

[19]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[20]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[21]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[22]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[23]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[24]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[25]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[26]  Jun Zhang,et al.  Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[27]  Frederico G. Guimarães,et al.  A comparison of dominance criteria in many-objective optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[28]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[30]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).