Shaping communities of local optima by perturbation strength

Recent work discovered that fitness landscapes induced by Iterated Local Search (ILS) may consist of multiple clusters, denoted as funnels or communities of local optima. Such studies exist only for perturbation operators (kicks) with low strength. We examine how different strengths of the ILS perturbation operator affect the number and size of clusters. We present an empirical study based on local optima networks from NK fitness landscapes. Our results show that a properly selected perturbation strength can help overcome the effect of ILS getting trapped in clusters of local optima. This has implications for designing effective ILS approaches in practice, where traditionally only small perturbations or complete restarts are applied, with the middle ground of intermediate perturbation strengths largely unexplored.

[1]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[2]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[3]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[4]  Andries P. Engelbrecht,et al.  Fitness Landscape Analysis for Metaheuristic Performance Prediction , 2014 .

[5]  Sébastien Vérel,et al.  A study of NK landscapes' basins and local optima networks , 2008, GECCO '08.

[6]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[7]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[8]  Sébastien Vérel,et al.  Local optima networks and the performance of iterated local search , 2012, GECCO '12.

[9]  Bart Naudts,et al.  A comparison of predictive measures of problem difficulty in evolutionary algorithms , 2000, IEEE Trans. Evol. Comput..

[10]  Doug Hains,et al.  Revisiting the big valley search space structure in the TSP , 2011, J. Oper. Res. Soc..

[11]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[12]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[13]  Brian Charlesworth Kauffman's ‘origins of order’. Making evolution seem complicated , 1995 .

[14]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[15]  Sebastian Herrmann Determining the Difficulty of Landscapes by PageRank Centrality in Local Optima Networks , 2016, EvoCOP.

[16]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[17]  Franz Rothlauf,et al.  Design of Modern Heuristics , 2011, Natural Computing Series.

[18]  Franz Rothlauf,et al.  Design of Modern Heuristics: Principles and Application , 2011 .

[19]  Sébastien Vérel,et al.  Local Optima Networks: A New Model of Combinatorial Fitness Landscapes , 2014, ArXiv.

[20]  Heike Trautmann,et al.  Detecting Funnel Structures by Means of Exploratory Landscape Analysis , 2015, GECCO.

[21]  M. Leonard,et al.  The human factor: the critical importance of effective teamwork and communication in providing safe care , 2004, Quality and Safety in Health Care.

[22]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[23]  Franz Rothlauf,et al.  Communities of Local Optima as Funnels in Fitness Landscapes , 2016, GECCO.

[24]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[25]  El-Ghazali Talbi,et al.  A parallel genetic algorithm for the graph partitioning problem , 1991, ICS '91.

[26]  Sébastien Vérel,et al.  Communities of Minima in Local Optima Networks of Combinatorial Spaces , 2011, ArXiv.

[27]  Srinivasan Parthasarathy,et al.  Markov clustering of protein interaction networks with improved balance and scalability , 2010, BCB '10.

[28]  Gabriela Ochoa,et al.  Deconstructing the Big Valley Search Space Hypothesis , 2016, EvoCOP.

[29]  P. Stadler Landscapes and their correlation functions , 1996 .

[30]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[31]  L. Darrell Whitley,et al.  The dispersion metric and the CMA evolution strategy , 2006, GECCO.

[32]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[33]  Marco Locatelli,et al.  On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..

[34]  S. Dongen Graph clustering by flow simulation , 2000 .

[35]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[36]  Edmund K. Burke,et al.  The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration , 2015, Artificial Evolution.

[37]  William J. Cook,et al.  Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003, INFORMS Journal on Computing.

[38]  Enrique Alba,et al.  Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance , 2012, PPSN.

[39]  E. D. Weinberger,et al.  The NK model of rugged fitness landscapes and its application to maturation of the immune response. , 1989, Journal of theoretical biology.

[40]  Sébastien Vérel,et al.  Local Optima Networks with Escape Edges , 2011, Artificial Evolution.

[41]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[42]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[43]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[44]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[45]  Franz Rothlauf,et al.  Predicting Heuristic Search Performance with PageRank Centrality in Local Optima Networks , 2015, GECCO.