Rule composition in graph transformation models of chemical reactions

• You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

[1]  J. Ziegler,et al.  Artificial Chemistries-A Review , 2001 .

[2]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[3]  Hartmut Ehrig,et al.  Parallelism and concurrency in high-level replacement systems , 1991, Mathematical Structures in Computer Science.

[4]  Reiko Heckel,et al.  Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach , 1997, Handbook of Graph Grammars.

[5]  Jens Nielsen,et al.  Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway , 2005, Applied and Environmental Microbiology.

[6]  N. Entner,et al.  Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.

[7]  Gemma L. Holliday,et al.  MACiE: exploring the diversity of biochemical reactions , 2011, Nucleic Acids Res..

[8]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Hartmut Ehrig,et al.  Introduction to the Algebraic Theory of Graph Grammars (A Survey) , 1978, Graph-Grammars and Their Application to Computer Science and Biology.

[10]  Christopher D. Thompson-Walsh,et al.  Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models , 2012, FSTTCS.

[11]  Peter F. Stadler,et al.  A Graph-Based Toy Model of Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[12]  Ulrike Golas Analysis and correctness of algebraic graph and model transformations , 2011 .

[13]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[14]  Nicola Zamboni,et al.  13C metabolic flux analysis in complex systems. , 2011, Current opinion in biotechnology.

[15]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[16]  Daniel Merkle,et al.  Inferring chemical reaction patterns using rule composition in graph grammars , 2012, ArXiv.

[17]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[18]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[19]  Sonja J. Prohaska,et al.  Chromatin computation: epigenetic inheritance as a pattern reconstruction problem. , 2013, Journal of theoretical biology.

[20]  Anna Eliasson Lantz,et al.  Metabolic network analysis of Streptomyces tenebrarius, Streptomyces with Entner-Doudoroff pathway , 2005 .

[21]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[22]  Annegret Habel,et al.  Relabelling in Graph Transformation , 2002, ICGT.

[23]  Ehud Shapiro,et al.  Cells as Computation , 2003, CMSB.

[24]  James R Faeder,et al.  Rule-based modeling of signal transduction: a primer. , 2012, Methods in molecular biology.

[25]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[26]  James B. Hendrickson,et al.  Comprehensive System for Classification and Nomenclature of Organic Reactions , 1997, J. Chem. Inf. Comput. Sci..

[27]  B. Atanasov,et al.  Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Michael Hucka,et al.  A Correction to the Review Titled "Rules for Modeling Signal-Transduction Systems" by W. S. Hlavacek et al. , 2006, Science's STKE.

[29]  Ulrike Golas,et al.  How to delete categorically - Two pushout complement constructions , 2011, J. Symb. Comput..

[30]  Jin Yang,et al.  Graph Theory for Rule-Based Modeling of Biochemical Networks , 2006, Trans. Comp. Sys. Biology.

[31]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[32]  R. Milo,et al.  Rethinking glycolysis: on the biochemical logic of metabolic pathways. , 2012, Nature chemical biology.

[33]  Mario Vento,et al.  An Improved Algorithm for Matching Large Graphs , 2001 .

[34]  Daniel Merkle,et al.  A Software Package for Chemically Inspired Graph Transformation , 2016, ICGT.

[35]  Francesc Rosselló,et al.  Efficient Reconstruction of Metabolic Pathways by Bidirectional Chemical Search , 2009, Bulletin of mathematical biology.

[36]  V. Schachter,et al.  Genome-scale models of bacterial metabolism: reconstruction and applications , 2008, FEMS microbiology reviews.

[37]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[38]  Daniel Merkle,et al.  50 Shades of Rule Composition - From Chemical Reactions to Higher Levels of Abstraction , 2014, FMMB.

[39]  L W Buss,et al.  What would be conserved if "the tape were played twice"? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Daniel Merkle,et al.  Chemical Graph Transformation with Stereo-Information , 2017, ICGT.

[41]  Tsuyoshi Murata,et al.  {m , 1934, ACML.