Asymptotically Exact Denoising in Relation to Compressed Sensing

Denoising has to do with estimating a signal $$\mathbf {x}_0$$x0 from its noisy observations $$\mathbf {y}=\mathbf {x}_0+\mathbf {z}$$y=x0+z. In this paper, we focus on the “structured denoising problem,” where the signal $$\mathbf {x}_0$$x0 possesses a certain structure and $$\mathbf {z}$$z has independent normally distributed entries with mean zero and variance $$\sigma ^2$$σ2. We employ a structure-inducing convex function $$f(\cdot )$$f(·) and solve $$\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}$$minx{12‖y-x‖22+σλf(x)} to estimate $$\mathbf {x}_0$$x0, for some $$\lambda >0$$λ>0. Common choices for $$f(\cdot )$$f(·) include the $$\ell _1$$ℓ1 norm for sparse vectors, the $$\ell _1-\ell _2$$ℓ1-ℓ2 norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate $$\mathbf {x}^*$$x∗ is the normalized mean-squared error $$\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}$$NMSE(σ)=E‖x∗-x0‖22σ2. We show that NMSE is maximized as $$\sigma \rightarrow 0$$σ→0 and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the $${\lambda }$$λ-scaled subdifferential $${\lambda }\partial f(\mathbf {x}_0)$$λ∂f(x0). When $${\lambda }$$λ is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem $$\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}$$minf(x)≤f(x0){‖y-x‖2}. The paper also connects these results to the generalized LASSO problem, in which one solves $$\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}$$minf(x)≤f(x0){‖y-Ax‖2} to estimate $$\mathbf {x}_0$$x0 from noisy linear observations $$\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}$$y=Ax0+z. We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.

[1]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[4]  Y. Gordon On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .

[5]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[6]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[9]  Scott Chen,et al.  Examples of basis pursuit , 1995, Optics + Photonics.

[10]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[11]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[14]  R. Rockafellar SECOND-ORDER CONVEX ANALYSIS , 1999 .

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[17]  M. Ledoux The concentration of measure phenomenon , 2001 .

[18]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[19]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[20]  Stephen L. Keeling,et al.  Total variation based convex filters for medical imaging , 2003, Appl. Math. Comput..

[21]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[22]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[23]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[24]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[25]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[26]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[30]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[31]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[32]  D. Donoho,et al.  Thresholds for the Recovery of Sparse Solutions via L1 Minimization , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[33]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[34]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[35]  A. Tsybakov,et al.  Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.

[36]  Weiyu Xu,et al.  Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization , 2008, 2008 47th IEEE Conference on Decision and Control.

[37]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[39]  Mihailo Stojnic,et al.  Various thresholds for ℓ1-optimization in compressed sensing , 2009, ArXiv.

[40]  Mihailo Stojnic,et al.  Block-length dependent thresholds in block-sparse compressed sensing , 2009, ArXiv.

[41]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[42]  Alexandros G. Dimakis,et al.  Sparse Recovery of Positive Signals with Minimal Expansion , 2009, ArXiv.

[43]  M. Stojnic Various thresholds for $\ell_1$-optimization in compressed sensing , 2009 .

[44]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[45]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[46]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[47]  Babak Hassibi,et al.  On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.

[48]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[49]  Weiyu Xu,et al.  Weighted ℓ1 minimization for sparse recovery with prior information , 2009, 2009 IEEE International Symposium on Information Theory.

[50]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[51]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[52]  Julien Mairal,et al.  Proximal Methods for Sparse Hierarchical Dictionary Learning , 2010, ICML.

[53]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[54]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[55]  Babak Hassibi,et al.  New Null Space Results and Recovery Thresholds for Matrix Rank Minimization , 2010, ArXiv.

[56]  Wei Lu,et al.  Modified-CS: Modifying compressive sensing for problems with partially known support , 2009, 2009 IEEE International Symposium on Information Theory.

[57]  Francis R. Bach,et al.  Structured sparsity-inducing norms through submodular functions , 2010, NIPS.

[58]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[59]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[60]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[61]  Andrea Montanari,et al.  Analysis of approximate message passing algorithm , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[62]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[63]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[64]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[65]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[66]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[67]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[68]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[69]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[70]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[71]  Alexandros G. Dimakis,et al.  Sparse Recovery of Nonnegative Signals With Minimal Expansion , 2011, IEEE Transactions on Signal Processing.

[72]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[73]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[74]  Emmanuel J. Candès,et al.  How well can we estimate a sparse vector? , 2011, ArXiv.

[75]  Robert D. Nowak,et al.  Tight Measurement Bounds for Exact Recovery of Structured Sparse Signals , 2011, ArXiv.

[76]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[77]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[78]  Emmanuel J. Candès,et al.  Simple Bounds for Low-complexity Model Reconstruction , 2011, ArXiv.

[79]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[80]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[81]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .

[82]  Babak Hassibi,et al.  Tight recovery thresholds and robustness analysis for nuclear norm minimization , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[83]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[84]  Nicolas Vayatis,et al.  Estimation of Simultaneously Sparse and Low Rank Matrices , 2012, ICML.

[85]  Andrea Montanari,et al.  Universality in Polytope Phase Transitions and Message Passing Algorithms , 2012, ArXiv.

[86]  Babak Hassibi,et al.  On a relation between the minimax risk and the phase transitions of compressed recovery , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[87]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[88]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[89]  Babak Hassibi,et al.  Recovery threshold for optimal weight ℓ1 minimization , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[90]  Michael A. Saunders,et al.  Proximal Newton-type Methods for Minimizing Convex Objective Functions in Composite Form , 2012, NIPS 2012.

[91]  Joel A. Tropp,et al.  Sharp recovery bounds for convex deconvolution, with applications , 2012, ArXiv.

[92]  Mohamed-Jalal Fadili,et al.  A quasi-Newton proximal splitting method , 2012, NIPS.

[93]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[94]  Francis R. Bach,et al.  Intersecting singularities for multi-structured estimation , 2013, ICML.

[95]  Andrew B. Nobel,et al.  Reconstruction of a low-rank matrix in the presence of Gaussian noise , 2010, J. Multivar. Anal..

[96]  Christos Thrampoulidis,et al.  The squared-error of generalized LASSO: A precise analysis , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[97]  Guarantees of total variation minimization for signal recovery , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[98]  Andrea Montanari,et al.  The phase transition of matrix recovery from Gaussian measurements matches the minimax MSE of matrix denoising , 2013, Proceedings of the National Academy of Sciences.

[99]  Joel A. Tropp,et al.  Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.

[100]  Mihailo Stojnic,et al.  A framework to characterize performance of LASSO algorithms , 2013, ArXiv.

[101]  Mihailo Stojnic,et al.  A performance analysis framework for SOCP algorithms in noisy compressed sensing , 2013, ArXiv.

[102]  Emmanuel J. Candès,et al.  Simple bounds for recovering low-complexity models , 2011, Math. Program..

[103]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[104]  Richard G. Baraniuk,et al.  Asymptotic Analysis of Complex LASSO via Complex Approximate Message Passing (CAMP) , 2011, IEEE Transactions on Information Theory.

[105]  Andrea Montanari,et al.  Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising , 2011, IEEE Transactions on Information Theory.

[106]  Joel A. Tropp,et al.  Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.

[107]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[108]  Vidyashankar Sivakumar,et al.  Estimation with Norm Regularization , 2014, NIPS.

[109]  Michael A. Saunders,et al.  Proximal Newton-Type Methods for Minimizing Composite Functions , 2012, SIAM J. Optim..

[110]  Tengyuan Liang,et al.  Geometrizing Local Rates of Convergence for High-Dimensional Linear Inverse Problems , 2014 .

[111]  D. Donoho,et al.  Minimax risk of matrix denoising by singular value thresholding , 2013, 1304.2085.

[112]  Rina Foygel,et al.  Corrupted Sensing: Novel Guarantees for Separating Structured Signals , 2013, IEEE Transactions on Information Theory.

[113]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[114]  Joel A. Tropp,et al.  Sharp Recovery Bounds for Convex Demixing, with Applications , 2012, Found. Comput. Math..

[115]  Christos Thrampoulidis,et al.  Asymptotically Exact Error Analysis for the Generalized $\ell_2^2$-LASSO , 2015, ISIT 2015.

[116]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[117]  D. Donoho,et al.  Minimax risk over / p-balls for / q-error , 2022 .