The Vector Distance Functions

We present a novel method for representing and evolving objects of arbitrary dimension. The method, called the Vector Distance Function (VDF) method, uses the vector that connects any point in space to its closest point on the object. It can deal with smooth manifolds with and without boundaries and with shapes of different dimensions. It can be used to evolve such objects according to a variety of motions, including mean curvature. If discontinuous velocity fields are allowed the dimension of the objects can change. The evolution method that we propose guarantees that we stay in the class of VDF's and therefore that the intrinsic properties of the underlying shapes such as their dimension, curvatures can be read off easily from the VDF and its spatial derivatives at each time instant. The main disadvantage of the method is its redundancy: the size of the representation is always that of the ambient space even though the object we are representing may be of a much lower dimension. This disadvantage is also one of its strengths since it buys us flexibility.

[1]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[2]  Roberto Cipolla,et al.  The visual motion of curves and surfaces , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  M. Gage Curve shortening makes convex curves circular , 1984 .

[5]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[6]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[7]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[8]  Benjamin B. Kimia,et al.  Shock-Based Reaction-Diffusion Bubbles for Image Segmentation , 1995, CVRMed.

[9]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[10]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[11]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[12]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[13]  Ron Kimmel Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[14]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[15]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[16]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[17]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[18]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[19]  Baba C. Vemuri,et al.  Front Propagation: A Framework for Topology Independent Shape Modeling and Recovery , 1994 .

[20]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[21]  Luigi Ambrosio,et al.  Curvature and distance function from a manifold , 1998 .

[22]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[23]  J. Steinhoff,et al.  A New Eulerian Method for the Computation of Propagating Short Acoustic and Electromagnetic Pulses , 2000 .

[24]  Olivier Faugeras,et al.  Shape Representation as the Intersection of n-k Hypersurfaces , 2000 .

[25]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[26]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[27]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  V. Caselles,et al.  Snakes in Movement , 1996 .

[29]  Guillermo Sapiro,et al.  3D active contours , 1996 .

[30]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[31]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[32]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[33]  S. Osher,et al.  Motion of curves in three spatial dimensions using a level set approach , 2001 .

[34]  Jack Xin,et al.  Diffusion-Generated Motion by Mean Curvature for Filaments , 2001, J. Nonlinear Sci..

[35]  Olivier D. Faugeras,et al.  Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.

[36]  H. Soner,et al.  Level set approach to mean curvature flow in arbitrary codimension , 1996 .

[37]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[38]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[39]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[41]  Olivier D. Faugeras,et al.  Reconciling Distance Functions and Level Sets , 1999, Scale-Space.

[42]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[43]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[44]  I. Holopainen Riemannian Geometry , 1927, Nature.

[45]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[46]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[47]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[48]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[49]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[50]  Alfred M. Bruckstein,et al.  Planar Shape Enhancement and Exaggeration , 1998, Graph. Model. Image Process..

[51]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[52]  Johan Montagnat,et al.  Representation, shape, topology and evolution of deformable surfaces. Application to 3D medical imag , 2000 .

[53]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[54]  Benjamin B. Kimia,et al.  Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.

[55]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[56]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[57]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Guillermo Sapiro,et al.  Region tracking on level-sets methods , 1999, IEEE Transactions on Medical Imaging.