Nonrepetitive colorings of graphs

A vertex coloring of a graph $G$ is $k \textit{-nonrepetitive}$ if one cannot find a periodic sequence with $k$ blocks on any simple path of $G$. The minimum number of colors needed for such coloring is denoted by $\pi _k(G)$ . This idea combines graph colorings with Thue sequences introduced at the beginning of 20th century. In particular Thue proved that if $G$ is a simple path of any length greater than $4$ then $\pi _2(G)=3$ and $\pi_3(G)=2$. We investigate $\pi_k(G)$ for other classes of graphs. Particularly interesting open problem is to decide if there is, possibly huge, $k$ such that $\pi_k(G)$ is bounded for planar graphs.

[1]  P. Pleasants Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Christian Maudutt,et al.  Multiplicative properties of the Thue-Morse sequence , 2002, Period. Math. Hung..

[3]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[4]  James D. Currie,et al.  Open problems in pattern avoidance , 1993 .

[5]  F. Michel Dekking,et al.  Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.

[6]  Sandi Klavzar,et al.  Nonrepetitive colorings of trees , 2007, Discret. Math..

[7]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[8]  Doron Zeilberger There are More Than 2**(n/17) n-Letter Ternary Square-Free Words , 1998 .

[9]  Jarosław Grytczuk,et al.  Nonrepetitive Graph Coloring , 2006 .

[10]  James D. Currie,et al.  There Are Ternary Circular Square-Free Words of Length n for n >= 18 , 2002, Electron. J. Comb..

[11]  Harold Marston Morse A One-to-One Representation of Geodesics on a Surface of Negative Curvature , 1921 .

[12]  Christian Choffrut,et al.  Combinatorics of Words , 1997, Handbook of Formal Languages.

[13]  Jaroslaw Grytczuk,et al.  Thue-like Sequences and Rainbow Arithmetic Progressions , 2002, Electron. J. Comb..

[14]  J. Beck,et al.  AN APPLICATION OF LOVASZ LOCAL LEMMA: THERE EXISTS AN INFINITE 01-SEQUENCE CONTAINING NO NEAR IDENTICAL INTERVALS , 1984 .

[15]  Tom C. Brown,et al.  Is There a Sequence on Four Symbols in Which No Two Adjacent Segments are Permutations of One Another , 1971 .

[16]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[17]  Veikko Keränen,et al.  Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.

[18]  James D. Currie Which graphs allow infinite nonrepetitive walks? , 1991, Discret. Math..

[19]  W. H. Gottschalk,et al.  A characterization of the Morse minimal set , 1964 .

[20]  Jaroslaw Grytczuk,et al.  Non-repetitive colorings of infinite sets , 2003, Discret. Math..

[21]  James D. Currie,et al.  The Fixing Block Method in Combinatorics on Words , 2003, Comb..

[22]  Glenn G. Chappell,et al.  Coloring with no 2-Colored P4's , 2004, Electron. J. Comb..

[23]  Jaroslaw Grytczuk Pattern avoiding colorings of Euclidean spaces , 2002, Ars Comb..

[24]  Jean-Bernard Zuber On the Counting of Fully Packed Loop Configurations: Some New Conjectures , 2004, Electron. J. Comb..

[25]  James D. Currie,et al.  Non-Repetitive Tilings , 2002, Electron. J. Comb..

[26]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[27]  P. Erdos Some unsolved problems. , 1957 .

[28]  Sandi Klavzar,et al.  Square-free colorings of graphs , 2004, Ars Comb..

[29]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[30]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[31]  William Duckworth Minimum Connected Dominating Sets of Random Cubic Graphs , 2002, Electron. J. Comb..

[32]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[33]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[34]  Jean A. Larson,et al.  Square-free and cube-free colorings of the ordinals. , 1980 .