Computational object recognition: a biologically motivated approach

We propose a conceptual framework for artificial object recognition systems based on findings from neurophysiological and neuropsychological research on the visual system in primate cortex. We identify some essential questions, which have to be addressed in the course of designing object recognition systems. As answers, we review some major aspects of biological object recognition, which are then translated into the technical field of computer vision. The key suggestions are the use of incremental and view-based approaches together with the ability of online feature selection and the interconnection of object-views to form an overall object representation. The effectiveness of the computational approach is estimated by testing a possible realization in various tasks and conditions explicitly designed to allow for a direct comparison with the biological counterpart. The results exhibit excellent performance with regard to recognition accuracy, the creation of sparse models and the selection of appropriate features.

[1]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[2]  D. Scott Perceptual learning. , 1974, Queen's nursing journal.

[3]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[5]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[6]  D. W. Thompson,et al.  Three-dimensional model matching from an unconstrained viewpoint , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[7]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[8]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[9]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[10]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[11]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[12]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Allen M. Waxman,et al.  Adaptive 3-D Object Recognition from Multiple Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[16]  Keiji Tanaka Inferotemporal cortex and higher visual functions , 1992, Current Opinion in Neurobiology.

[17]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Goodale,et al.  Visual pathways to perception and action. , 1993, Progress in brain research.

[19]  M. Goodale Visual pathways supporting perception and action in the primate cerebral cortex , 1993, Current Opinion in Neurobiology.

[20]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.

[21]  M. Goodale,et al.  Chapter 28 Visual pathways to perception and action , 1993 .

[22]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[23]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[24]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  M J Tarr,et al.  Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). , 1995, Journal of experimental psychology. Human perception and performance.

[26]  Rolf P. Würtz,et al.  Multilayer dynamic link networks for establishing image point correspondences and visual object recognition , 1995 .

[27]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[28]  Stephen Grossberg,et al.  Fast-learning VIEWNET architectures for recognizing three-dimensional objects from multiple two-dimensional views , 1995, Neural Networks.

[29]  M. Goodale,et al.  The visual brain in action , 1995 .

[30]  G. Wallis How neurons learn to associate 2D-views in invariant object recognition , 1996 .

[31]  Arbeitsgruppe Bülthoff How Neurons Learn to Associate 2d-views in Invariant Object Recognition , 1996 .

[32]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[33]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[34]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[35]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[36]  Peter A. Frensch,et al.  The Role of Information Reduction in Skill Acquisition , 1996, Cognitive Psychology.

[37]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[38]  Rajesh P. N. Rao Dynamic appearance-based recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Guy Wallis,et al.  Temporal Order in Human Object Recognition Learning , 1998 .

[40]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[41]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[42]  D. Perrett,et al.  Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations , 1998, Cognition.

[43]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[44]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[45]  Steffen Schmalz,et al.  Combining Multiple Views and Temporal Associations for 3-D object Recognition , 1998, ECCV.

[46]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[47]  M.M. Van Hulle,et al.  View-based 3D object recognition with support vector machines , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[48]  M. Hulle,et al.  VIEW-BASED 3 D OBJECT RECOGNITION WITH SUPPORT VECTOR MACHINES , 1999 .

[49]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[50]  Luc Van Gool,et al.  Content-Based Image Retrieval Based on Local Affinely Invariant Regions , 1999, VISUAL.

[51]  R. Desimone,et al.  Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning , 1999, The Journal of Neuroscience.

[52]  D. Mareschal,et al.  A computational and neuropsychological account of object‐oriented behaviours in infancy , 1999 .

[53]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[54]  Gregory Dudek,et al.  Local appearance for robust object recognition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[55]  David G. Lowe,et al.  Towards a Computational Model for Object Recognition in IT Cortex , 2000, Biologically Motivated Computer Vision.

[56]  Tomaso Poggio,et al.  Computational Models of Object Recognition in Cortex: A Review , 2000 .

[57]  Narendra Ahuja,et al.  Learning to recognize objects , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[58]  Lucas Paletta,et al.  Active object recognition by view integration and reinforcement learning , 2000, Robotics Auton. Syst..

[59]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[60]  Barbara Hammer,et al.  Generalized Relevance LVQ for Time Series , 2001, ICANN.

[61]  Heinrich H. Bülthoff,et al.  Acquiring Robust Representations for Recognition from Image Sequences , 2001, DAGM-Symposium.

[62]  Heinrich H. Bülthoff,et al.  View-based recognition under illumination changes using local features , 2001, CVPR 2001.

[63]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Mishkin,et al.  Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. , 2001, Journal of neurophysiology.

[65]  Heinrich H. Bülthoff,et al.  Automatic acquisition of exemplar-based representations for recognition from image sequences , 2001, CVPR 2001.

[66]  Stepán Obdrzálek,et al.  Object Recognition using Local Affine Frames on Distinguished Regions , 2002, BMVC.

[67]  T. Poggio,et al.  How Visual Cortex Recognizes Objects: The Tale of the Standard Model , 2002 .

[68]  Heiko Wersing,et al.  Unsupervised Learning of Combination Features for Hierarchical Recognition Models , 2002, ICANN.

[69]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[70]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[71]  M. Chun,et al.  The dark side of visual attention , 2002, Current Opinion in Neurobiology.

[72]  B. Hammer,et al.  Monitoring technical systems with prototype based clustering , 2003 .

[73]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[74]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[75]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[76]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.

[77]  E. Wojciulik,et al.  Attention increases neural selectivity in the human lateral occipital complex , 2004, Nature Neuroscience.

[78]  Koji Okamoto,et al.  Quantitative visualization of micro-tube flow using micro-PIV , 2004, J. Vis..

[79]  Daphna Weinshall,et al.  A self-organizing multiple-view representation of 3D objects , 2004, Biological Cybernetics.

[80]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[81]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[82]  Jochen Triesch,et al.  Analysis of a Biologically-Inspired System for Real-time Object Recognition , 2005 .

[83]  Heiko Wersing,et al.  Rapid Online Learning of Objects in a Biologically Motivated Recognition Architecture , 2005, DAGM-Symposium.

[84]  Abel G. Oliva,et al.  Gist of a scene , 2005 .

[85]  Julian Eggert,et al.  Learning viewpoint invariant object representations using a temporal coherence principle , 2005, Biological Cybernetics.

[86]  Martin A. Riedmiller,et al.  Appearance-Based Robot Discrimination Using Eigenimages , 2006, RoboCup.

[87]  Alain Rakotomamonjy,et al.  Object Categorization Using Kernels Combining Graphs and Histograms of Gradients , 2006, ICIAR.

[88]  J. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[89]  Esa Rahtu,et al.  Properties of Patch Based Approaches for the Recognition of Visual Object Classes , 2006, DAGM-Symposium.

[90]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[91]  David G. Lowe,et al.  University of British Columbia. , 1945, Canadian Medical Association journal.

[92]  Martin Lauer,et al.  Real-time 3D Ball Recognition using Perspective and Catadioptric Cameras , 2007, EMCR.

[93]  Dirk B. Walther,et al.  Task-set switching with natural scenes: measuring the cost of deploying top-down attention. , 2007, Journal of vision.

[94]  B. Schölkopf,et al.  Generalization and similarity in exemplar models of categorization: Insights from machine learning , 2008, Psychonomic bulletin & review.

[95]  Martin A. Riedmiller,et al.  Incremental GRLVQ: Learning relevant features for 3D object recognition , 2008, Neurocomputing.

[96]  B. Sendhoff,et al.  Evolution of Hierarchical Features for Visual Object Recognition , 2022 .