Studies on effective thermal conductivity of particle-reinforced polymeric flexible mould material composites

Due to poor thermal conductivity of conventional flexible polymeric mould materials, the solidification of (wax/plastic) patterns in soft tooling (ST) process takes a longer time. This problem can be solved by increasing the effective thermal conductivity of mould materials through (high thermal conductive) particle reinforcement. Therefore in this study, the equivalent thermal conductivities (ETCs) of particle-reinforced polymeric mould materials, namely silicone rubber and polyurethane are experimentally observed using hot disc technique. Findings show that not only the amount of filler content and type of filler material, but also particle size has significant influence on the effective thermal conductivity of polymer and it starts increasing drastically at 20–30 per cent volume fraction of filler content. To predict the cooling time in ST process, it is important to have an appropriate model of ETC. In this study, a new method is proposed based on a genetic algorithm fuzzy (GA-fuzzy) approach to model the effective thermal conductivity of a two-phase particle-reinforced polymer composites (PCs). The effectiveness of the model is extensively tested in comparison with various empirical expressions reported in literature based on the experimental measurements. It has been found that the model based on GA-fuzzy approach not only outperforms the existing models, but also possesses a generic one applicable to a wide range of two-phase particle-reinforced PCs.

[1]  El-Ghazali Talbi,et al.  An Analysis of the Effect of Multiple Layers in the Multi-Objective Design of Conducting Polymer Composites , 2009 .

[2]  Kishalay Mitra,et al.  Genetic algorithms in polymeric material production, design, processing and other applications: a review , 2008 .

[3]  H. Liem,et al.  Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing , 2007 .

[4]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[5]  Chang‐Ming Ye,et al.  Thermal conductivity of high density polyethylene filled with graphite , 2006 .

[6]  Arup Kumar Nandi,et al.  TSK-type FLC using a combined LR and GA: Surface roughness prediction in ultraprecision turning , 2006 .

[7]  Jason M. Keith,et al.  Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites , 2006 .

[8]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[9]  Xuehong Lu,et al.  Thermal conductivity of boron nitride‐filled thermoplastics: Effect of filler characteristics and composite processing conditions , 2005 .

[10]  Xuehong Lu,et al.  Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber , 2005 .

[11]  Laurent Ibos,et al.  Thermophysical properties of polypropylene/aluminum composites , 2004 .

[12]  Douglas R. MacFarlane,et al.  Thermal, mechanical, and conductivity properties of cyanate ester composites , 2004 .

[13]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[14]  Julia A. King,et al.  Factorial design approach applied to electrically and thermally conductive nylon 6,6 , 2001 .

[15]  Shoji Okamoto,et al.  A new theoretical equation for thermal conductivity of two‐phase systems , 1999 .

[16]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[17]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[18]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[19]  Y. Agari,et al.  Estimation on thermal conductivities of filled polymers , 1986 .

[20]  Salvatore Torquato,et al.  Effective electrical conductivity of two‐phase disordered composite media , 1985 .

[21]  Y. Agari,et al.  Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity , 1985 .

[22]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Lawrence E. Nielsen,et al.  Thermal conductivity of particulate-filled polymers , 1973 .

[24]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .

[25]  D. Sundstrom,et al.  Thermal Conductivity of Reinforced Plastics , 1970 .

[26]  S. Cheng,et al.  The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures , 1969 .

[27]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[28]  G. T. Tsao,et al.  Thermal Conductivity of Two-Phase Materials , 1961 .

[29]  W. Kingery Thermal Conductivity: XIV, Conductivity of Multicomponent Systems , 1959 .

[30]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[31]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[32]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.