Properties of the vacuum. I. mechanical and thermodynamic

Abstract Casimir energies are calculated for quantized fields in cavities with a variety of forms. Consequences for models of the vacuum state are considered. The possibility of negative mass systems is discussed. Results on energy and entropy of finite quantum systems at non-zero temperature are given.

[1]  J. S. Dowker,et al.  Quantum field theory on Clifford-Klein space-times. The effective Lagrangian and vacuum stress-energy tensor , 1978 .

[2]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[3]  J. S. Dowker,et al.  Effective Lagrangian and energy-momentum tensor in de Sitter space , 1976 .

[4]  I. Zucker A note on lattice sums in two dimensions , 1974 .

[5]  M. L. Glasser,et al.  The evaluation of lattice sums. I. Analytic procedures , 1973 .

[6]  I. Zucker Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants , 1976 .

[7]  N. Kroll Theoretical Interpretation of a Recent Experimental Investigation of the Photon Rest Mass , 1971 .

[8]  Stephen Wolfram,et al.  Properties of the vacuum. 2. Electrodynamic , 1983 .

[9]  A. H. Zimerman,et al.  Some comments on the application of analytic regularisation to the Casimir forces , 1980 .

[10]  Carl Ludwig Siegel,et al.  Contributions to the Theory of the Dirichlet L-Series and the Epstein Zeta-Functions , 1943 .

[11]  S. Unwin,et al.  Quantum vacuum energy and the masslessness of the photon , 1981 .

[12]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[13]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[14]  J. S. Dowker,et al.  Finite temperature and boundary effects in static space-times , 1978 .

[15]  K. Milton Zero-point energy in bag models , 1980 .

[16]  J. S. Dowker,et al.  Finite temperature field theory with boundaries: Stress tensor and surface action renormalisation , 1980 .

[17]  L. Ford Quantum vacuum energy in general relativity , 1975 .

[18]  Timothy H. Boyer,et al.  QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .

[19]  G. Feinberg,et al.  General Theory of the van der Waals Interaction: A Model-Independent Approach , 1970 .

[20]  B. Dewitt,et al.  Quantum field theory in curved spacetime , 1975 .

[21]  W. Lukosz ELECTROMAGNETIC ZERO-POINT ENERGY AND RADIATION PRESSURE FOR A RECTANGULAR CAVITY. , 1971 .

[22]  K. Milton Zero Point Energy of Confined Fermions , 1980 .

[23]  R. Critchley Vacuum stress tensor for a slightly squashed Einstein Universe , 1981 .

[24]  B. Davies Quantum Electromagnetic Zero‐Point Energy of a Conducting Spherical Shell , 1972 .

[25]  R. Balian,et al.  Electromagnetic waves near perfect conductors. II. Casimir effect , 1978 .

[26]  K. Schram On the macroscopic theory of retarded Van der Waals forces , 1973 .

[27]  Paul Epstein,et al.  Zur Theorie allgemeiner Zetafunctionen , 1903 .

[28]  T. H. Boyer Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation , 1975 .

[29]  D. Deutsch,et al.  Boundary effects in quantum field theory , 1979 .

[30]  J. Schwinger,et al.  Casimir self-stress on a perfectly conducting spherical shell , 1978 .

[31]  H. Casimir Introductory remarks on quantum electrodynamics , 1953 .

[32]  M. Nieto,et al.  How to Catch a Photon and Measure its Mass , 1971 .

[33]  L. Girardello,et al.  Temperature and supersymmetry , 1981 .

[34]  S. Hawking Space-Time Foam , 1979 .

[35]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[36]  M. Glasser The evaluation of lattice sums. III. Phase modulated sums , 1974 .