Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
暂无分享,去创建一个
[1] A. A. Mullin,et al. Principles of neurodynamics , 1962 .
[2] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[3] John H. Holland,et al. Adaptation in natural and artificial systems , 1975 .
[4] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[5] James L. McClelland,et al. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .
[6] Lawrence Davis,et al. Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.
[7] Thomas P. Caudell,et al. Parametric Connectivity: Training of Constrained Networks using Genetic Algorithms , 1989, ICGA.
[8] L. Darrell Whitley,et al. Optimizing Neural Networks Using FasterMore Accurate Genetic Search , 1989, ICGA.
[9] L. Darrell Whitley,et al. Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..
[10] Lawrence. Davis,et al. Handbook Of Genetic Algorithms , 1990 .
[11] Luís B. Almeida,et al. Speeding up Backpropagation , 1990 .
[12] L. Darrell Whitley,et al. Delta Coding: An Iterative Search Strategy for Genetic Algorithms , 1991, ICGA.
[13] M. Kanehisa,et al. A knowledge base for predicting protein localization sites in eukaryotic cells , 1992, Genomics.
[14] Willfried Wienholt. Minimizing the System Error in Feedforward Neural Networks with Evolution Strategy , 1993 .
[15] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.
[16] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.
[17] A. Dourado,et al. Lime Kiln Fault Detection and Diagnosis by Neural Networks , 1995, ICANNGA.
[18] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.
[19] Tim Jones. Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .
[20] Markus Höhfeld,et al. Improving the Generalization Performance of Multi-Layer-Perceptrons with Population-Based Incremental Learning , 1996, PPSN.
[21] Thomas Bäck,et al. Evolutionary Algorithms in Theory and Practice , 1996 .
[22] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[23] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[24] L. D. Whitley. A free lunch proof for Gray versus Binary encodings , 1999 .
[25] Jorng-Tzong Horng,et al. Incorporation family competition into Gaussian and Cauchy mutations to training neural networks using an evolutionary algorithm , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[26] Sven Anderson,et al. Training hidden Markov Models using population-based learning , 1999 .
[27] Araceli Sanchis,et al. Applying Evolution Strategies to Neural Networks Robot Controller , 1999, IWANN.
[28] Pedro Ángel Castillo Valdivieso,et al. G-Prop-II: global optimization of multilayer perceptrons using GAs , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[29] José M. Molina,et al. Neural networks robot controller trained with evolution strategies , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[30] Pablo Moscato,et al. Memetic algorithms: a short introduction , 1999 .
[31] Byoung-Tak Zhang,et al. Evolving neural trees for time series prediction using Bayesian evolutionary algorithms , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.
[32] Pedro Larrañaga,et al. A Review on Estimation of Distribution Algorithms , 2002, Estimation of Distribution Algorithms.