Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design

In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal significantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimal—and possibly even ‘better’—ones is dispensable. For this, we will examine several typical problems in space trajectory design—a biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfers—and demonstrate the possible benefit of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose.

[1]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[2]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[3]  Carlos A. Coello Coello,et al.  Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms , 2008, GECCO '08.

[4]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[5]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[6]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[7]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[8]  Massimiliano Vasile,et al.  Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization , 2009 .

[9]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[11]  Dario Izzo,et al.  Lambert's Problem for Exponential Sinusoids , 2006 .

[12]  David Corne,et al.  Bounded Pareto Archiving: Theory and Practice , 2004, Metaheuristics for Multiobjective Optimisation.

[13]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[14]  Günter Rudolph,et al.  Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.

[15]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[16]  E. Talbi,et al.  Approximating the -Efficient Set of an MOP with Stochastic Search Algorithms , 2007 .

[17]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[18]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[19]  Massimiliano Vasile,et al.  Approximate Solutions in Space Mission Design , 2008, PPSN.

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[23]  H. Fawcett Manual of Political Economy , 1995 .

[24]  D. J. White,et al.  Epsilon efficiency , 1986 .

[25]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[26]  Carlos A. Coello Coello,et al.  Approximating the epsilon -Efficient Set of an MOP with Stochastic Search Algorithms , 2007, MICAI.