Optical Associative Memories

Development of optical computing has been particularly rapid in recent years; cf., e.g., an extensive survey in a special issue of IEEE Spectrum, August 1986 (“Optical Computing: A Field in Flux”). Of course, the optical fibers have been adopted to communication technology, and the optical archival storages are spreading to various fields, but in addition, development of new optically active materials has opened completely new possibilities for performing bulk computations in distributed media. There exist two lines of development: optical associative memories, and the highly parallel optical computers (with a two-dimensional topology of their distributed “processing elements”). As the latter fall outside the scope of this book, we may concentrate on the associative memories. Being of the distributed type, they can be divided in two categories. In the first of them, the matrix operations for associative recall are performed by multiplying light intensities using some kind of lightmodulating matrix arrays, and summing up convergent light beams by discrete photensensitive elements. The second type is based on holography.

[1]  S. H. Lee,et al.  Matrix multiplication by optical methods. , 1970, Applied optics.

[2]  Demetri Psaltis,et al.  A space integrating acousto-optic matrix-matrix multiplier , 1984 .

[3]  Peter P. Sorokin,et al.  Ruby Laser Q-Switching Elements Using Phthalocyanine Molecules in Solution , 1964, IBM J. Res. Dev..

[4]  S. A. Collins,et al.  Operation Of A Numerical Optical Data Processor , 1980, Other Conferences.

[5]  G R Knight Holographic associative memory and processor. , 1975, Applied optics.

[6]  D. Z. Anderson,et al.  Coherent optical eigenstate memory. , 1986, Optics letters.

[7]  C Warde,et al.  Hybrid optical inference machines: architectural considerations. , 1986, Applied optics.

[8]  W. Fink,et al.  Incoherent Optical Matrix Multiplication , 1975 .

[9]  D Casasent,et al.  Optical systolic array processor using residue arithmetic. , 1983, Applied optics.

[10]  D. R. Bosomworth,et al.  Thick holograms in photochromic materials. , 1968, Applied optics.

[11]  Peter S. Guilfoyle Systolic Acousto-Optic Binary Convolver , 1984 .

[12]  N Nishida,et al.  Holographic coding plate: a new application of holographic memory. , 1973, Applied optics.

[13]  K D Laakmann Hollow rectangular dielectric waveguides: errata. , 1976, Applied optics.

[14]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[15]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[16]  V N Morozov Associative parallel-search memory , 1978 .

[17]  H. M. Smith Basic holographic principles , 1977 .

[18]  Earl E. Swartzlander The Quasi-Serial Multiplier , 1973, IEEE Transactions on Computers.

[19]  Y. Zel’dovich,et al.  Principles of phase conjugation , 1985 .

[20]  H K Liu,et al.  Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens. , 1984, Optics letters.

[21]  Thomas J. Harris,et al.  Digital light deflectors , 1966 .

[22]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.

[23]  David M. Pepper,et al.  Applications of Optical Phase Conjugation , 1986 .

[24]  D. White,et al.  Coded multiple exposure holograms. , 1968, Applied optics.

[25]  Nobuo Nishida,et al.  A New Associative Memory System Utilizing Holography , 1970, IEEE Transactions on Computers.

[26]  H Nakano,et al.  Real-time processing of the multiple matrix product using an incoherent optical system. , 1985, Applied optics.

[27]  Ravindra A. Athale,et al.  High Accuracy Matrix Multiplication With A Magnetooptic Spatial Light Modulator , 1983, Optics & Photonics.

[28]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[29]  G R Knight,et al.  Page-oriented associative holographic memory. , 1974, Applied optics.

[30]  Earl E. Swartzlander,et al.  Inner Product Computers , 1978, IEEE Transactions on Computers.

[31]  G. J. Dunning,et al.  Holographic associative memory with nonlinearities in the correlation domain. , 1987, Applied optics.

[32]  Steven C. Gustafson,et al.  Convolver-Based Optical Systolic Processing Architectures , 1985 .

[33]  Teuvo Kohonen,et al.  Content-addressable memories , 1980 .

[34]  D Casasent Acoustooptic transducers in iterative optical vector-matrix processors. , 1982, Applied optics.

[35]  H K Liu,et al.  Large-memory real-time multichannel multiplexed pattern recognition. , 1984, Applied optics.

[36]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[37]  S Cartwright New optical matrix-vector multiplier. , 1984, Applied optics.

[38]  R A Athale,et al.  Optical systems for efficient triple-matrix-product processing. , 1983, Optics letters.

[39]  Demetri Psaltis Computational Power And Accuracy Trade-Offs In Optical Numerical Processors , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[40]  R.A. Athale,et al.  Optical processing using outer-product concepts , 1984, Proceedings of the IEEE.

[41]  H Mada,et al.  Architecture for optical computing using holographic associative memories. , 1985, Applied optics.

[42]  C. M. Verber Integrated Optical Architectures For Matrix Multiplication , 1985 .

[43]  K. Bromley,et al.  Incoherent optical correlators , 1977, Proceedings of the IEEE.

[44]  H. John Caulfield Associative mappings by optical holography , 1985 .

[45]  D. Gabor An introduction to coherent optics and holography , 1966 .

[46]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.