Bee Nest Site Selection as an Optimization Process

In recent years several bee inspired optimization techniques have been proposed. These methods are either based on the bees’ foraging or mating behavior. Both foraging and mating regulate distributions outside (foraging) or within a colony (mating). Foraging determines the ratio of individuals that explore the surroundings for new food sources and those that exploit known food sources, while mating determines the distribution of genotypes within a colony. In contrast, nest-site selection is a processes that constitutes a decision-making process and enables a colony to identify and converge towards one best solution. We therefore propose to use the bees’ nestsite selection behavior as the basis for developing new bee inspired optimization techniques. Using a model of the nestsite selection process of real bees, we empirically investigate its optimization potential. In particular, we determined if this model works in dynamic and noisy environments. Our results are promising and suggest that nest-site selection can be indeed useful in the context of optimization.

[1]  David J. T. Sumpter,et al.  What makes a honeybee scout? , 2007, Behavioral Ecology and Sociobiology.

[2]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[3]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[4]  N. Koeniger The biology of the honey bee , 1988, Insectes Sociaux.

[5]  Sung Hoon Jung,et al.  Queen-bee evolution for genetic algorithms , 2003 .

[6]  M. Beekman,et al.  High bee traffic disrupts transfer of directional information in flying honeybee swarms , 2009, Animal Behaviour.

[7]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[8]  Masafumi Hagiwara,et al.  Bee System: Finding Solution by a Concentrated Search , 1998 .

[9]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[10]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[11]  M. Lindauer Schwarmbienen auf Wohnungssuche , 1955, Zeitschrift für vergleichende Physiologie.

[12]  T. Seeley,et al.  Sensory coding of nest-site value in honeybee swarms , 2008, Journal of Experimental Biology.

[13]  Stefan Fuchs,et al.  Lower performance in honeybee colonies of uniform paternity , 1994 .

[14]  Malcolm Yoke-Hean Low,et al.  A Bee Colony Optimization Algorithm to Job Shop Scheduling , 2006, Proceedings of the 2006 Winter Simulation Conference.

[15]  Kevin M Schultz,et al.  The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? , 2008, Journal of Experimental Biology.

[16]  Martin Middendorf,et al.  Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance , 2010, NICSO.

[17]  D. Mautz,et al.  Der Kommunikationseffekt der Schwänzeltänze bei Apis mellifica carnica (Pollm.) , 1971, Zeitschrift für vergleichende Physiologie.

[18]  Thomas D. Seeley,et al.  Consensus building during nest-site selection in honey bee swarms: the expiration of dissent , 2003, Behavioral Ecology and Sociobiology.

[19]  R. Menzel,et al.  Displaced honey bees perform optimal scale-free search flights. , 2007, Ecology.

[20]  T. Seeley,et al.  Coordinating a group departure: who produces the piping signals on honeybee swarms? , 2007, Behavioral Ecology and Sociobiology.

[21]  Madeleine Beekman,et al.  How does an informed minority of scouts guide a honeybee swarm as it flies to its new home? , 2006, Animal Behaviour.

[22]  T. Seeley,et al.  Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making , 2003, Behavioral Ecology and Sociobiology.

[23]  M. Beekman,et al.  Nest site selection in the open-nesting honeybee Apis florea , 2008, Behavioral Ecology and Sociobiology.

[24]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[25]  O Bénichou,et al.  Optimal search strategies for hidden targets. , 2005, Physical review letters.

[26]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[27]  Thomas D. Seeley,et al.  Do honeybees have two discrete dances to advertise food sources? , 2008, Animal Behaviour.

[28]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[29]  T. Seeley,et al.  Nest-site selection in honey bees: how well do swarms implement the "best-of-N" decision rule? , 2001, Behavioral Ecology and Sociobiology.

[30]  Germán Terrazas,et al.  Nature Inspired Cooperative Strategies for Optimization, NICSO 2010, May 12-14, 2010, Granada, Spain , 2012, NISCO.

[31]  H A Abbass,et al.  MARRIAGE IN HONEY-BEE OPTIMIZATION (MBO): A HAPLOMETROSIS POLYGYNOUS SWARMING APPROACH , 2001 .

[32]  Dušan Teodorović,et al.  Bee Colony Optimization – a Cooperative Learning Approach to Complex Transportation Problems , 2005 .

[33]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.

[34]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[35]  T. Seeley,et al.  Nest site selection by the honey bee,Apis mellifera , 1978, Insectes Sociaux.

[36]  S. Graham,et al.  Honey Bee Nest Thermoregulation: Diversity Promotes Stability , 2004, Science.

[37]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[38]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[39]  T. Seeley,et al.  THE NATURAL HISTORY OF THE FLIGHT OF HONEY BEE SWARMS , 1979 .

[40]  Martin Middendorf,et al.  Searching for a new home—scouting behavior of honeybee swarms , 2007 .

[41]  Ali Karci Imitation of Bee Reproduction as a Crossover Operator in Genetic Algorithms , 2004, PRICAI.

[42]  R. Menzel,et al.  Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts , 1996, Journal of Comparative Physiology A.