Subsurface Sensing of Buried Objects Under a Randomly Rough Surface Using Scattered Electromagnetic Field Data

This paper proposes a new inverse method for microwave-based subsurface sensing of lossy dielectric objects embedded in a dispersive lossy ground with an unknown rough surface. An iterative inversion algorithm is employed to reconstruct the geometry and dielectric properties of the half-space ground as well as that of the buried object. B-splines are used to model the shape of the object as well as the height of the rough surface. In both cases, the control points for the spline function represent the unknowns to be recovered. A single-pole rational transfer function is used to capture the dispersive nature of the background. Here, the coefficients in the numerator and denominator are the unknowns. The approach presented in this paper is based on the state-of-the-art semianalytic mode matching forward model, which is a fast and efficient algorithm to determine the scattered electromagnetic fields. Numerical experiments involving two-dimensional geometries and TM incident plane waves demonstrate the accuracy and reliability of this inverse method

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  Jie Zhang,et al.  3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .

[3]  M. Sadiku Numerical Techniques in Electromagnetics , 2000 .

[4]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[5]  Xiang-Gen Xia,et al.  Three-dimensional ISAR imaging of maneuvering targets using three receivers , 2001, IEEE Trans. Image Process..

[6]  Andreas Mandelis,et al.  Generalized methodology for thermal diffusivity depth profile reconstruction in semi‐infinite and finitely thick inhomogeneous solids , 1996 .

[7]  Haihua Feng,et al.  Moderately rough surface underground imaging via short-pulse quasi-ray Gaussian beams , 2003 .

[8]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[9]  Carey M. Rappaport,et al.  Semianalytic mode matching techniques for detecting nonmetallic mines buried in realistic soils , 2000, Defense, Security, and Sensing.

[10]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  Carey M. Rappaport,et al.  Scattering from lossy dielectric objects buried beneath randomly rough ground: validating the semi-analytic mode matching algorithm with 2-D FDFD , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Matthew N. O. Sadiku,et al.  Numerical Techniques in Electromagnetics , 2000 .

[13]  Freysteinn Sigmundsson,et al.  Unwrapping ground displacement signals in satellite radar interferograms with aid of GPS data and MRF regularization , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  Eric L. Miller,et al.  Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation , 2000 .

[15]  H. G. Walther,et al.  Theory of microstructural depth profiling by photothermal measurements , 1995 .

[16]  Carl E. Baum,et al.  Polarimetric SAR imaging of buried landmines , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  P. van Genderen,et al.  Convolutional models for buried target characterization with ground penetrating Radar , 2005, IEEE Transactions on Antennas and Propagation.

[18]  G. Dural,et al.  ISAR imaging to identify basic scattering mechanisms , 1994 .

[19]  L. Carin,et al.  Optimal time-domain detection of a deterministic target buried under a randomly rough interface , 2001 .

[20]  Eric L. Miller,et al.  Object detection using high resolution near-field array processing , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Habtom W. Ressom,et al.  Inversion of ocean color observations using particle swarm optimization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Peyman Milanfar,et al.  Trained detection of buried mines in SAR images via the deflection-optimal criterion , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  C. Hines Electromagnetic Waves , 2021, Nature.

[24]  Charles A. DiMarzio,et al.  Statistical fusion of GPR and EMI data , 1999, Defense, Security, and Sensing.

[25]  Jesper Schou,et al.  Restoration of polarimetric SAR images using simulated annealing , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[27]  Gang Wang,et al.  On the resolution of UWB microwave imaging of tumors in random breast tissue , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[28]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[29]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[30]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[31]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[32]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[33]  Subhasis Mitra,et al.  Novel approach to identify good tracer clouds from a sequence of satellite images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[35]  Ki-Sang Hong,et al.  Road detection in spaceborne SAR images using a genetic algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..

[36]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[37]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[38]  Magda El-Shenawee,et al.  Mine detection under rough ground surfaces using 2-D FDTD modeling and hypothesis testing , 2001 .

[39]  Eric L. Miller,et al.  Statistical method to detect subsurface objects using array ground-penetrating radar data , 2002, IEEE Trans. Geosci. Remote. Sens..

[40]  Eric L. Miller,et al.  Wavelet‐based methods for the nonlinear inverse scattering problem using the extended Born approximation , 1996 .

[41]  Andrea Massa,et al.  An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Eric L. Miller,et al.  Wavelet domain image restoration with adaptive edge-preserving regularization , 2000, IEEE Trans. Image Process..

[43]  Paolo Gamba,et al.  Neural detection of pipe signatures in ground penetrating radar images , 2000, IEEE Trans. Geosci. Remote. Sens..

[44]  Lawrence Carin,et al.  Time-domain sensing of targets buried under a rough air-ground interface , 1998, Defense, Security, and Sensing.

[45]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[46]  E Miller,et al.  A shape-based reconstruction technique for DPDW data. , 2000, Optics express.

[47]  Eric L. Miller,et al.  A multiscale, statistically based inversion scheme for linearized inverse scattering problems , 1996, IEEE Trans. Geosci. Remote. Sens..

[48]  David Boas,et al.  Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography. , 2003, Applied optics.

[49]  W. Clem Karl,et al.  Reconstructing Ellipsoids from Projections , 1994, CVGIP Graph. Model. Image Process..

[50]  Anyong Qing,et al.  Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm , 2001, IEEE Trans. Geosci. Remote. Sens..

[51]  Eric L. Miller,et al.  A new shape-based method for object localization and characterization from scattered field data , 2000, IEEE Trans. Geosci. Remote. Sens..

[52]  Weng Cho Chew,et al.  An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..

[53]  L. Peters,et al.  Ground penetrating radar as a subsurface environmental sensing tool , 1994, Proc. IEEE.

[54]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[55]  George Robinson,et al.  The Calculus of Observations - A Treatise on Numerical Mathematics , 1924 .

[56]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[57]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[58]  Eric L. Miller,et al.  Multiscale, Statistical Anomaly Detection Analysis and Algorithms for Linearized Inverse Scattering Problems , 1997, Multidimens. Syst. Signal Process..

[59]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Paul M. Meaney,et al.  A clinical prototype for active microwave imaging of the breast , 2000 .

[61]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[62]  Andreas Mandelis,et al.  Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions , 1997 .

[63]  W. Clem Karl,et al.  A curve evolution approach to object-based tomographic reconstruction , 2003, IEEE Trans. Image Process..

[64]  Lawrence Carin,et al.  Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space , 1995 .

[65]  F. Santosa,et al.  Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set , 1998 .

[66]  C. Rappaport,et al.  FDTD wave propagation in dispersive soil using a single pole conductivity model , 1999 .