!"#$%&'#"("))*)'#"+,'#)"--$-.' /0'#(1#"."+$-.'2"3*4(1-+5'14'5#$6$-.'-*7(")'"8+$3$+0'

Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampuslike network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware.

[1]  A. Aertsen,et al.  Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model , 2008, The Journal of Neuroscience.

[2]  John J Hopfield,et al.  Neurodynamics of mental exploration , 2009, Proceedings of the National Academy of Sciences.

[3]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[4]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[5]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[6]  Helge J. Ritter,et al.  The dynamic wave expansion neural network model for robot motion planning in time-varying environments , 2005, Neural Networks.

[7]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[8]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[9]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[10]  W. Spain,et al.  Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[11]  Indranil Saha,et al.  journal homepage: www.elsevier.com/locate/neucom , 2022 .

[12]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[13]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[14]  Jadin C. Jackson,et al.  Hippocampal Sharp Waves and Reactivation during Awake States Depend on Repeated Sequential Experience , 2006, The Journal of Neuroscience.

[15]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[16]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[17]  Todd K. Leen,et al.  Anti-Hebbian Spike-Timing-Dependent Plasticity and Adaptive Sensory Processing , 2010, Front. Comput. Neurosci..

[18]  Mattias P. Karlsson,et al.  Awake replay of remote experiences in the hippocampus , 2009, Nature Neuroscience.

[19]  J. P. Seward An experimental analysis of latent learning. , 1949, Journal of experimental psychology.

[20]  A Aertsen,et al.  Propagation of synchronous spiking activity in feedforward neural networks , 1996, Journal of Physiology-Paris.

[21]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Takeshi Aihara,et al.  Spatial Localization of Synapses Required for Supralinear Summation of Action Potentials and EPSPs , 2004, Journal of Computational Neuroscience.

[23]  Pankaj Sah,et al.  Calcium‐Activated Potassium Currents In Mammalian Neurons , 2000, Clinical and experimental pharmacology & physiology.

[24]  Johannes J. Letzkus,et al.  Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity , 2007, Trends in Neurosciences.

[25]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[26]  A. Kirkwood,et al.  Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neuron.

[27]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[28]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[29]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[30]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[31]  K. Boahen Neuromorphic Microchips. , 2005, Scientific American.

[32]  T. Aihara,et al.  The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network , 2007, Neuroscience.

[33]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[34]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[35]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[36]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[37]  Heinrich Klar,et al.  Dynamic Path Planning with Spiking Neural Networks , 1997, IWANN.

[38]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[39]  Zhang Yi,et al.  Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[40]  Leo Dorst,et al.  The geometrical representation of path planning problems , 1991, Robotics Auton. Syst..

[41]  Emilie Campanac,et al.  Spike timing‐dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons , 2008, The Journal of physiology.