Discriminative high order SVD: Adaptive tensor subspace selection for image classification, clustering, and retrieval

Tensor based dimensionality reduction has recently attracted attention from computer vision and pattern recognition communities for both feature extraction and data compression. As an unsupervised method, High-Order Singular Value Decomposition (HOSVD) searches for low-rank subspaces such that the low-rank approximation error is minimized. In this paper, we propose a new unsupervised high-order tensor decomposition approach which employs the strength of discriminative analysis and K-means clustering to adaptively select subspaces that improve the clustering, classification, and retrieval capabilities of HOSVD. We provide both theoretical analysis to guarantee that our new method generates more discriminative subspaces and empirical studies on several public computer vision data sets to show the consistent improvement of our method over existing methods.

[1]  Narendra Ahuja,et al.  A Tensor Approximation Approach to Dimensionality Reduction , 2008, International Journal of Computer Vision.

[2]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Chris H. Q. Ding,et al.  Adaptive dimension reduction for clustering high dimensional data , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[5]  C. Ding,et al.  Two-Dimensional Singular Value Decomposition ( 2 DSVD ) for 2 D Maps and Images , 2005 .

[6]  Heng Huang,et al.  Symmetric two dimensional linear discriminant analysis (2DLDA) , 2009, CVPR.

[7]  Fei-Fei Li,et al.  Grouplet: A structured image representation for recognizing human and object interactions , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[10]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[11]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[12]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[13]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[14]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2004, Machine Learning.

[15]  Neil Genzlinger A. and Q , 2006 .

[16]  Dong Xu,et al.  Discriminant analysis with tensor representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[18]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[19]  Chris H. Q. Ding,et al.  Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering , 2008, KDD.

[20]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[21]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[23]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[24]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[25]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.