Provable Tensor Factorization with Missing Data

We study the problem of low-rank tensor factorization in the presence of missing data. We ask the following question: how many sampled entries do we need, to efficiently and exactly reconstruct a tensor with a low-rank orthogonal decomposition? We propose a novel alternating minimization based method which iteratively refines estimates of the singular vectors. We show that under certain standard assumptions, our method can recover a three-mode n × n × n dimensional rank-r tensor exactly from O(n3/2r5 log4 n) randomly sampled entries. In the process of proving this result, we solve two challenging sub-problems for tensors with missing data. First, in analyzing the initialization step, we prove a generalization of a celebrated result by Szemeredie et al. on the spectrum of random graphs. We show that this initialization step alone is sufficient to achieve the root mean squared error on the parameters bounded by C(r2n3/2(log n)4/|Ω|) from |Ω| observed entries for some constant C independent of n and r. Next, we prove global convergence of alternating minimization with this good initialization. Simulations suggest that the dependence of the sample size on the dimensionality n is indeed tight.

[1]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[5]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[6]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[7]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[8]  D. Massart,et al.  Dealing with missing data: Part II , 2001 .

[9]  Anna R. Karlin,et al.  Spectral analysis of data , 2001, STOC '01.

[10]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[11]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[12]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[13]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[15]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[17]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[18]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[19]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[20]  Osamu Watanabe,et al.  Propagation Connectivity of Random Hypergraphs , 2012, Electron. J. Comb..

[21]  Taiji Suzuki,et al.  Convex Tensor Decomposition via Structured Schatten Norm Regularization , 2013, NIPS.

[22]  Akshay Krishnamurthy,et al.  Low-Rank Matrix and Tensor Completion via Adaptive Sampling , 2013, NIPS.

[23]  Moritz Hardt,et al.  On the Provable Convergence of Alternating Minimization for Matrix Completion , 2013, ArXiv.

[24]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[25]  Anima Anandkumar,et al.  Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates , 2014, ArXiv.

[26]  Bo Huang,et al.  Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.

[27]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[28]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[29]  Kristin L. Sainani,et al.  Dealing with missing data , 2002 .