Principles of animate vision

Abstract Vision theories can be categorized in terms of the amount of explicit representation postulated in the perceiver. Gibson's precomputational theory eschewed any explicit representation. In contrast, Marr used layers of explicit representation, hoping to simplify vision computations. Current technological advances in robotic hardware and computer architectures have allowed the building of anthropomorphic devices that capture important technical features of human vision. Experience with these devices suggests that cooperative sensorimotor behaviors can reduce the need for explicit representation. This view is captured in the notion of “animate vision,” which is a framework for sequential decision-making, gaze control, and visual learning.


[2]  Yehezkel Yeshurun,et al.  Cepstral Filtering on a Columnar Image Architecture: A Fast Algorithm for Binocular Stereo Segmentation , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  S. Ullman Against direct perception , 1980, Behavioral and Brain Sciences.

[4]  T. Garvey Perceptual strategies for purposive vision , 1975 .

[5]  Yiannis Aloimonos,et al.  Obstacle Avoidance Using Flow Field Divergence , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[7]  Michael L. Scott,et al.  The Rochester checkers player: multimodel parallel programming for animate vision , 1992, Computer.

[8]  Robert H. Thomas,et al.  The Uniform System: An approach to runtime support for large scale shared memory parallel processors , 1988, ICPP.

[9]  C.M. Brown,et al.  Cooperative gaze holding in binocular vision , 1991, IEEE Control Systems.

[10]  A. T. Bahill,et al.  Zero-latency tracking of predictable targets by time-delay systems† , 1983 .

[11]  David Chapman,et al.  Pengi: An Implementation of a Theory of Activity , 1987, AAAI.

[12]  Robert H. Halstead,et al.  MULTILISP: a language for concurrent symbolic computation , 1985, TOPL.

[13]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[14]  Christopher Brown,et al.  Gaze controls with interactions and decays , 1989, IEEE Trans. Syst. Man Cybern..

[15]  D. Coombs Real-Time Gaze Holding in Binocular Robot Vision , 1992 .

[16]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[17]  Dana H. Ballard,et al.  Active Perception and Reinforcement Learning , 1990, Neural Computation.

[18]  Evangelos P. Markatos Multiprocessor Synchronization Primitives with Priorities , 1991 .

[19]  Evangelos P. Markatos,et al.  Operating system support for adaptable real-time systems , 1990 .

[20]  David A. Forsyth,et al.  Projectively invariant representations using implicit algebraic curves , 1990, Image Vis. Comput..

[21]  Krithi Ramamritham,et al.  The Spring kernel: a new paradigm for real-time operating systems , 1989, OPSR.

[22]  Michael L. Scott,et al.  Language Support for Loosely Coupled Distributed Programs , 1987, IEEE Transactions on Software Engineering.

[23]  Masayuki Inaba,et al.  Design and implementation of a system that generates assembly programs from visual recognition of human action sequences , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[24]  A. Waxman An image flow paradigm , 1987 .

[25]  Geoffrey E. Hinton Inferring the meaning of direct perception , 1980, Behavioral and Brain Sciences.

[26]  Brian N. Bershad,et al.  An Open Environment for Building Parallel Programming Systems , 1988, PPOPP/PPEALS.

[27]  David N. Lee,et al.  Visual control of locomotion. , 1977, Scandinavian journal of psychology.

[28]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[29]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[30]  Christopher M. Brown,et al.  Inverse Kinematics and Gaze Stabilization for the Rochester Robot Head , 1991 .

[31]  Michael J. Swain,et al.  Indexing via color histograms , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[32]  Christopher M. Brown,et al.  Notes on Control with Delay , 1991 .

[33]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[34]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[35]  Michael L. Scott,et al.  Multi-model parallel programming in psyche , 1990, PPOPP '90.