Variability of quantal synaptic currents in thalamocortical neurons.

[1]  A. Destexhe,et al.  Dendritic organization in thalamocortical neurons and state-dependent functions of inhibitory synaptic inputs , 2001 .

[2]  G. Stuart,et al.  Direct measurement of specific membrane capacitance in neurons. , 2000, Biophysical journal.

[3]  Alain Destexhe,et al.  Are inhibitory synaptic conductances on thalamic relay neurons inhomogeneous? Are synapses from individual afferents clustered? , 2000, Neurocomputing.

[4]  J. Huguenard,et al.  Reciprocal Inhibitory Connections Regulate the Spatiotemporal Properties of Intrathalamic Oscillations , 2000, The Journal of Neuroscience.

[5]  Alain Destexhe,et al.  Low threshold calcium T-current IV curve geometry is alterable through the distribution of T-channels in thalamic relay neurons , 1999, Neurocomputing.

[6]  Alain Destexhe,et al.  Dendritic calcium currents in thalamic relay cells , 1998 .

[7]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[8]  V S Sohal,et al.  Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology. , 1998, Journal of neurophysiology.

[9]  Peter Somogyi,et al.  Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses , 1998, Nature.

[10]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[11]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[12]  U. Eysel,et al.  Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells , 1998, Visual Neuroscience.

[13]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[14]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[15]  B. Walmsley,et al.  Diversity of structure and function at mammalian central synapses , 1998, Trends in Neurosciences.

[16]  Yoshikazu Shinoda,et al.  Serial electron microscopic reconstruction of axon terminals on physiologically identified thalamocortical neurons in the cat ventral lateral nucleus , 1997, The Journal of comparative neurology.

[17]  D. Prince,et al.  GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. , 1997, Journal of neurophysiology.

[18]  Mark Farrant,et al.  Differences in Synaptic GABAA Receptor Number Underlie Variation in GABA Mini Amplitude , 1997, Neuron.

[19]  M. Frerking,et al.  Are some minis multiquantal? , 1997, Journal of neurophysiology.

[20]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[21]  D. Prince,et al.  Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Fricker,et al.  GABAA receptor‐mediated IPSCs in rat thalamic sensory nuclei: patterns of discharge and tonic modulation by GABAB autoreceptors , 1997, The Journal of physiology.

[23]  J R Huguenard,et al.  Nucleus-Specific Chloride Homeostasis in Rat Thalamus , 1997, The Journal of Neuroscience.

[24]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[25]  J R Huguenard,et al.  GABAB receptor‐mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. , 1996, The Journal of physiology.

[26]  Martin Wilson,et al.  Variation in GABA mini amplitude is the consequence of variation in transmitter concentration , 1995, Neuron.

[27]  H. Ralston,et al.  Architecture of individual dendrites from intracellularly labeled thalamocortical projection neurons in the ventral posterolateral and ventral posteromedial nuclei of cat , 1995, The Journal of comparative neurology.

[28]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[29]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[30]  A. Agmon,et al.  Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. , 1994, Journal of neurophysiology.

[31]  F. Ebner,et al.  The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions. , 1994, Journal of neurophysiology.

[32]  P. Ohara,et al.  Dendritic architecture of rat somatosensory thalamocortical projection neurons , 1994, The Journal of comparative neurology.

[33]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[34]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[35]  P. Ohara,et al.  Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus , 1993, Journal of neurocytology.

[36]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[37]  C. Stevens Quantal release of neurotransmitter and long-term potentiation , 1993, Cell.

[38]  H Korn,et al.  Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. , 1992, Science.

[39]  D. Prince,et al.  A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[41]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[42]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[43]  I. Mody,et al.  Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons , 1992, Neuroscience.

[44]  N. Leresche Synaptic Currents in Thalamo‐cortical Neurons of the Rat Lateral Geniculate Nucleus , 1992, The European journal of neuroscience.

[45]  E. Marder,et al.  Artificial electrical synapses in oscillatory networks. , 1992, Journal of neurophysiology.

[46]  C. Gall,et al.  Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+ /calmodulin protein kinase gene expression in the rat centrat nervous system , 1992, Neuroscience.

[47]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[48]  B Sakmann,et al.  Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch‐clamp study. , 1990, The Journal of physiology.

[49]  N. Ropert,et al.  Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. , 1990, The Journal of physiology.

[50]  T. Salt,et al.  Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus , 1989, Neuroscience.

[51]  D. Prince,et al.  Printed in Great Britain , 2005 .

[52]  V. Crunelli,et al.  A T‐type Ca2+ current underlies low‐threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. , 1989, The Journal of physiology.

[53]  R. Faull,et al.  The distribution and morphology of identified thalamocortical projection neurons and glial cells with reference to the question of interneurons in the ventrolateral nucleus of the rat thalamus , 1987, Neuroscience.

[54]  Anita E. Hendrickson,et al.  Local circuit neurons in the rat ventrobasal thalamus—A gaba immunocytochemical study , 1987, Neuroscience.

[55]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[56]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[57]  James E. Vaughn,et al.  GABA neurons are the major cell type of the nucleus reticularis thalami , 1980, Brain Research.

[58]  Thomas H. Brown,et al.  Spontaneous miniature synaptic potentials in hippocampal neurons , 1979, Brain Research.

[59]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[60]  P. Andersen,et al.  The role of inhibition in the phasing of spontaneous thalamo‐cortical discharge , 1964, The Journal of physiology.

[61]  J. Eccles,et al.  Inhibitory Phasing of Neuronal Discharge , 1962, Nature.

[62]  R. Dykes,et al.  Bicuculline-induced alterations of response properties in functionally identified ventroposterior thalamic neurones , 2004, Experimental Brain Research.

[63]  F. Ebner,et al.  Induction of high frequency activity in the somatosensory thalamus of rats in vivo results in long-term potentiation of responses in SI cortex , 2004, Experimental Brain Research.

[64]  R. Low-Threshold Calcium Currents in Central Nervous System Neurons , 2003 .

[65]  J. Huguenard,et al.  Nucleus-specific differences in GABA(A)-receptor-mediated inhibition are enhanced during thalamic development. , 2000, Journal of neurophysiology.

[66]  S. Nelson,et al.  Electrotonic Structure and Synaptic Variability in Cortical Neurons , 1995 .

[67]  E. Jones,et al.  The anatomy of sensory relay functions in the thalamus. , 1991, Progress in brain research.