Stability and parameter dependency analysis of a facilitation tectal column (FTC) model

Mathematical models and computer simulations have been widely used to study the spatio-temporal characteristics of the processing of information carried out by the central nervous system. When trying to show whether or not a neural model accounts for the phenomena under study, if the number of parameters whose values need to be calculated becomes large, then computer simulations alone become very inefficient to define such values. Here, we developed stability and parameter dependency analyses of the mathematical representation of a single facilitation tectal column (FTC) model, to show how by using techniques from non-linear systems theory we can define the ranges of parameter values under which the model would explain the required performance of the neural net model. The benefits of these analyses can be grouped in two parts: first, the advantage of using non-linear systems techniques to analyze, analytically, the dynamics of neural net models; and second, we get a deeper understanding of why the hypotheses embedded in the models yield the appropriate behaviors and what are the critical situations (parametric combinations) under which these behaviors are displayed.