Accelerated search for materials with targeted properties by adaptive design

Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

[1]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons , 1967 .

[2]  Eckhard Quandt,et al.  Ultralow-fatigue shape memory alloy films , 2015, Science.

[3]  Phillips,et al.  Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. , 1992, Physical review. B, Condensed matter.

[4]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[5]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[6]  Richard D. James,et al.  Study of the cofactor conditions: Conditions of supercompatibility between phases , 2013, 1307.5930.

[7]  N. Cressie The origins of kriging , 1990 .

[8]  T. Castan,et al.  Modulated phases in multi-stage structural transformations , 2003 .

[9]  J. Humbeeck,et al.  Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys , 2010 .

[10]  D. Cromer,et al.  Orbital Radii of Atoms and Ions , 1965 .

[11]  B. Verlinden,et al.  R-phase transformation in NiTi alloys , 2014 .

[12]  Stefan Müller,et al.  Energy barriers and hysteresis in martensitic phase transformations , 2009 .

[13]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[16]  Harold T. Stokes,et al.  FINDSYM: program for identifying the space‐group symmetry of a crystal , 2005 .

[17]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[19]  Richard D. James,et al.  Microstructural dependence on middle eigenvalue in Ti-Ni-Au , 2014 .

[20]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[21]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[22]  T Lookman,et al.  Classification of ABO3 perovskite solids: a machine learning study. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[23]  Shijie Hao,et al.  Thermal cycling stability mechanism of Ti50.5Ni33.5Cu11.5Pd4.5 shape memory alloy with near-zero hysteresis , 2015 .

[24]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[25]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[26]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[28]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[29]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[30]  Dennis König,et al.  A New Prototype Two‐Phase (TiNi)–(β‐W) SMA System with Tailorable Thermal Hysteresis , 2011 .

[31]  Dirk C. Keene Acknowledgements , 1975 .

[32]  Amin Zollanvari,et al.  The Illusion of Distribution-Free Small-Sample Classification in Genomics , 2011, Current genomics.

[33]  Hui-Tian Wang,et al.  Variable cell nudged elastic band method for studying solid-solid structural phase transitions , 2013, Comput. Phys. Commun..

[34]  Yong Liu,et al.  Dependence of Transformation Temperatures of NiTi‐based Shape‐Memory Alloys on the Number and Concentration of Valence Electrons , 2008 .

[35]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .

[36]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[37]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[38]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[41]  James R. Chelikowsky,et al.  Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds , 1978 .

[42]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[43]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[44]  Yu Wang,et al.  Strain glass in Fe-doped Ti–Ni , 2010 .

[45]  University of Cambridge,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999 .

[46]  de Gironcoli S Phonons in Si-Ge systems: An ab initio interatomic-force-constant approach. , 1992, Physical review. B, Condensed matter.

[47]  Stefano de Gironcoli Phonons in Si-Ge systems: An ab initio interatomic-force-constant approach. , 1992 .

[48]  Lukas Furst,et al.  Bonding And Structure Of Molecules And Solids , 2016 .