Graspability map: A tool for evaluating grasp capabilities

This paper presents the graspability map, a novel approach to represent for a particular object the positions and orientations that a given mechanical hand can adopt to achieve a force closure precision grasp. The algorithm is based on the intersection between the fingertip workspaces and the object, plus the verification of a necessary condition for force closure grasps. The maps are computed offline and can be used for comparing the grasp capabilities of different mechanical hands with respect to some benchmark objects. The maps have also potential applications in online grasp and manipulation planning.

[1]  Jeffrey C. Trinkle,et al.  Grasp analysis as linear matrix inequality problems , 2000, IEEE Trans. Robotics Autom..

[2]  Xiangyang Zhu,et al.  Planning force-closure grasps on 3-D objects , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Marc Toussaint,et al.  Task maps in humanoid robot manipulation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Xiangyang Zhu,et al.  A pseudodistance function and its applications , 2004, IEEE Transactions on Robotics and Automation.

[5]  Siddhartha S. Srinivasa,et al.  Addressing pose uncertainty in manipulation planning using Task Space Regions , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Franziska Zacharias,et al.  Object-Specific Grasp Maps for Use in Planning Manipulation Actions , 2009 .

[7]  Gerd Hirzinger,et al.  Online generation of reachable grasps for dexterous manipulation using a representation of the reachable workspace , 2009, 2009 International Conference on Advanced Robotics.

[8]  Fumio Kanehiro,et al.  Fast grasp planning for hand/arm systems based on convex model , 2008, 2008 IEEE International Conference on Robotics and Automation.

[9]  Gerd Hirzinger,et al.  A fast and robust grasp planner for arbitrary 3D objects , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  F. Lotti,et al.  How Far Is the Human Hand ? A Review on Anthropomorphic Robotic End-effectors , 2003 .

[11]  William Townsend,et al.  The BarrettHand grasper – programmably flexible part handling and assembly , 2000 .

[12]  Matei T. Ciocarlie,et al.  Hand Posture Subspaces for Dexterous Robotic Grasping , 2009, Int. J. Robotics Res..

[13]  Peter K. Allen,et al.  Grasp Planning via Decomposition Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  Jiping He,et al.  Control of hand orientation and arm movement during reach and grasp , 2006, Experimental Brain Research.

[15]  Gerd Hirzinger,et al.  Reachable Independent Contact Regions for precision grasps , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[17]  Gerd Hirzinger,et al.  Capturing robot workspace structure: representing robot capabilities , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Mikel Sagardia,et al.  Improvements of the Voxmap-PointShell Algorithm - Fast Generation of Haptic Data-Structures , 2011 .

[19]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[20]  Yunhui Liu Computing n-Finger Form-Closure Grasps on Polygonal Objects , 2000, Int. J. Robotics Res..

[21]  Yunhui Liu,et al.  Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming , 1998, IEEE Trans. Robotics Autom..

[22]  M. Roa,et al.  Finding locally optimum force-closure grasps , 2009 .

[23]  Hong Liu,et al.  Multisensory five-finger dexterous hand: The DLR/HIT Hand II , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Matei T. Ciocarlie,et al.  The Columbia grasp database , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Florian Schmidt,et al.  Making planned paths look more human-like in humanoid robot manipulation planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[26]  Roberto Ponticelli,et al.  An Introductory Revision to Humanoid Robot Hands , 2005 .

[27]  Attawith Sudsang,et al.  Computing All Force-Closure Grasps of 2D Objects from Contact Point Set , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Rüdiger Dillmann,et al.  Grasp planning: Find the contact points , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).