Planck intermediate results XVI. Profile likelihoods for cosmological parameters

We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant di erences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit P m 0:26 eV (95% confidence) from the CMB+lensing+BAO data combination.

C. A. Oxborrow | R. B. Barreiro | J. Cardoso | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | J. Bartlett | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | A. Melchiorri | V. Pettorino | J. Rubino-Mart'in | M. White | J. Bobin | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | B. Wandelt | F. Bouchet | S. Matarrese | P. Bernardis | A. Jaffe | J. Bond | K. Ganga | W. Jones | S. Masi | F. Piacentini | M. Juvela | J. Diego | S. Mitra | A. Benoit-Lévy | R. Rebolo | A. Gregorio | P. Christensen | M. Ashdown | F. Sureau | B. Rusholme | E. Pierpaoli | R. Davis | T. Kisner | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | A. Liddle | C. Dickinson | P. Ade | M. Arnaud | J. Aumont | E. Battaner | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | C. Burigana | A. Catalano | A. Chamballu | H. Chiang | D. Clements | L. Colombo | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | E. Franceschi | S. Galeotta | M. Giard | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | A. Gruppuso | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | R. Kneissl | J. Knoche | L. Knox | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | P. Mazzotta | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | D. Novikov | I. Novikov | L. Pagano | F. Pajot | D. Paoletti | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | L. Popa | G. Pratt | J. Puget | J. Rachen | M. Remazeilles | C. Renault | S. Ricciardi | T. Riller | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Sandri | G. Savini | L. Spencer | J. Starck | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | D. Yvon | A. Zonca | S. Galli | M. Massardi | J. Murphy | M. Savelainen | M. Spinelli | B. R. d'Orfeuil | P. Christensen | S. Mitra

[1]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[2]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[3]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[4]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[5]  A. Ealet,et al.  Prospects for dark energy evolution: a frequentist multi-probe approach , 2005, astro-ph/0507170.

[6]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[7]  A. Lewis Cosmological parameters from WMAP 5-year temperature maps , 2008, 0804.3865.

[8]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[9]  J. Lesgourgues,et al.  Neutrino Cosmology: Preface , 2013 .

[10]  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[11]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[12]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[13]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[14]  A. Richard Thompson,et al.  The Atacama Large Millimeter/Submillimeter Array , 2009, Proceedings of the IEEE.

[15]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[16]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.

[17]  F. James Statistical Methods in Experimental Physics , 1973 .

[18]  Alan D. Martin,et al.  Review of Particle Physics: Particle data group , 2012 .

[19]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[20]  L. Verde,et al.  Are priors responsible for cosmology favoring additional neutrino species , 2011, 1106.5052.

[21]  ATLAS NOTE ATLAS-CONF-2013-014 Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb − 1 of proton-proton collision data , 2013 .

[22]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[23]  J. Lesgourgues,et al.  Neutrino Cosmology by Julien Lesgourgues , 2013 .

[24]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[25]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[26]  O. Zahn,et al.  NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE , 2011, 1110.5328.

[27]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[28]  J. Hamann Evidence for extra radiation? Profile likelihood versus Bayesian posterior , 2011, 1110.4271.

[29]  J. Hamann,et al.  Observational bounds on the cosmic radiation density , 2007, 0705.0440.

[30]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[31]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.