Internal Models in Control, Biology and Neuroscience

This tutorial paper deals with the Internal Model Principle (IMP) from different perspectives. The goal is to start from the principle as introduced and commonly used in the control theory and then enlarge the vision to other fields where “internal models” play a role. The biology and neuroscience fields are specifically targeted in the paper. The paper ends by presenting an “abstract” theory of IMP applicable to a large class of systems.

[1]  Lorenzo Marconi,et al.  Uniform Practical Nonlinear Output Regulation , 2008, IEEE Transactions on Automatic Control.

[2]  Daniele Astolfi,et al.  About Robustness of Internal Model-Based Control for Linear and Nonlinear Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[3]  Erol Cerasi,et al.  Modeling phasic insulin release: immediate and time-dependent effects of glucose. , 2002, Diabetes.

[4]  Lorenzo Marconi,et al.  The Chicken-Egg Dilemma and the Robustness Issue in Nonlinear Output Regulation with a Look Towards Adaptation and Universal Approximators , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[5]  Eduardo Sontag,et al.  Fold-change detection and scalar symmetry of sensory input fields , 2010, Proceedings of the National Academy of Sciences.

[6]  F. Lacquaniti,et al.  Does the brain model Newton's laws? , 2001, Nature Neuroscience.

[7]  Richard A Andersen,et al.  Forward estimation of movement state in posterior parietal cortex , 2008, Proceedings of the National Academy of Sciences.

[8]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[9]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[10]  C. Desoer,et al.  The robust nonlinear servomechanism problem , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[11]  C. Desoer,et al.  Tracking and Disturbance Rejection of MIMO Nonlinear Systems with PI Controller , 1985, 1985 American Control Conference.

[12]  E. Bizzi,et al.  Neuronal Correlates of Motor Performance and Motor Learning in the Primary Motor Cortex of Monkeys Adapting to an External Force Field , 2001, Neuron.

[13]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[14]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[15]  Jie Huang Asymptotic tracking and disturbance rejection in uncertain nonlinear systems , 1995, IEEE Trans. Autom. Control..

[16]  A. Muscella,et al.  Increase of [Ca(2+)](i) via activation of ATP receptors in PC-Cl3 rat thyroid cell line. , 2002, Cellular signalling.

[17]  Amy J Bastian,et al.  Cerebellar damage impairs internal predictions for sensory and motor function , 2015, Current Opinion in Neurobiology.

[18]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[19]  Stefan Schaal,et al.  Forward models in visuomotor control. , 2002, Journal of neurophysiology.

[20]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[21]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[22]  E D Sontag,et al.  Remarks on feedforward circuits, adaptation, and pulse memory. , 2008, IET systems biology.

[23]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  L. Christensen,et al.  University of Birmingham Disruption of state estimation in the human lateral cerebellum , 2007 .

[25]  Jerome Carriot,et al.  Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion , 2015, Nature Neuroscience.

[26]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[27]  Eduardo D. Sontag,et al.  Adaptation and regulation with signal detection implies internal model , 2003, Syst. Control. Lett..

[28]  Stephen G. Lisberger,et al.  Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys , 2008, Nature Neuroscience.

[29]  Takashi Nakakuki,et al.  Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. , 2006, The Journal of Biological Chemistry.

[30]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[31]  Giuseppe Pugliese,et al.  High glucose level inhibits capacitative Ca2 + influx in cultured rat mesangial cells by a protein kinase C-dependent mechanism , 1997, Diabetologia.

[32]  Zhen Xie,et al.  Molecular Systems Biology Peer Review Process File Synthetic Incoherent Feed-forward Circuits Show Adaptation to the Amount of Their Genetic Template. Transaction Report , 2022 .

[33]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[34]  Ana Rute Neves,et al.  The intricate side of systems biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Krakauer,et al.  A computational neuroanatomy for motor control , 2008, Experimental Brain Research.

[36]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[38]  Peter J. Gawthrop,et al.  Intermittent control: a computational theory of human control , 2011, Biological Cybernetics.

[39]  Richard Apps,et al.  An internal model of a moving visual target in the lateral cerebellum , 2009, The Journal of physiology.

[40]  Jie Huang,et al.  Parameter convergence and minimal internal model with an adaptive output regulation problem , 2009, Autom..

[41]  Pablo A. Iglesias,et al.  An approximate internal model principle: Applications to nonlinear models of biological systems , 2008 .

[42]  R. Evans,et al.  ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets , 2000, British journal of pharmacology.

[43]  W. Wonham,et al.  The internal model principle for linear multivariable regulators , 1975 .

[44]  Eduardo D. Sontag,et al.  Symmetry invariance for adapting biological systems , 2010, SIAM J. Appl. Dyn. Syst..

[45]  Shigemasa Takai Supervisory Control of Discrete Event Systems , 2014 .

[46]  Kwang-Hyun Cho,et al.  The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[47]  Anthony Leonardo,et al.  Internal models direct dragonfly interception steering , 2014, Nature.

[48]  F. Lacquaniti,et al.  The role of preparation in tuning anticipatory and reflex responses during catching , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  F. Lacquaniti,et al.  Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. , 2004, Journal of neurophysiology.

[50]  B. Webb Neural mechanisms for prediction: do insects have forward models? , 2004, Trends in Neurosciences.

[51]  W. Wonham,et al.  Error feedback and internal models on differentiable manifolds , 1982, 1982 21st IEEE Conference on Decision and Control.

[52]  Eduardo Sontag A Dynamic Model of Immune Responses to Antigen Presentation Predicts Different Regions of Tumor or Pathogen Elimination. , 2017, Cell systems.

[53]  Andreas Kremling,et al.  A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake , 2008, Bioinform..

[54]  A. Levchenko,et al.  Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. , 2001, Biophysical journal.

[55]  Jie Huang,et al.  Internal model principle and robust control of nonlinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[56]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[57]  Hassan K. Khalil,et al.  Robust servomechanism output feedback controllers for feedback linearizable systems , 1994, Autom..

[58]  Lorenzo Marconi,et al.  Semi-global nonlinear output regulation with adaptive internal model , 2001, IEEE Trans. Autom. Control..

[59]  Walter Murray Wonham,et al.  Structurally stable nonlinear regulation with step inputs , 1984, Mathematical systems theory.

[60]  Lorenzo Marconi,et al.  Shifting the internal model from control input to controlled output in nonlinear output regulation , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[61]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[62]  Dora E Angelaki,et al.  A Reevaluation of the Inverse Dynamic Model for Eye Movements , 2007, The Journal of Neuroscience.

[63]  Shinya Kuroda,et al.  Prediction and validation of the distinct dynamics of transient and sustained ERK activation , 2005, Nature Cell Biology.

[64]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[65]  A. Isidori,et al.  Global robust output regulation for a class of nonlinear systems , 2000 .

[66]  David C O'Carroll,et al.  A predictive focus of gain modulation encodes target trajectories in insect vision , 2017, eLife.

[67]  Liu Yang,et al.  Positive feedback may cause the biphasic response observed in the chemoattractant-induced response of Dictyostelium cells , 2006, Syst. Control. Lett..

[68]  Laurentiu S. Popa,et al.  What Features of Limb Movements are Encoded in the Discharge of Cerebellar Neurons? , 2011, The Cerebellum.

[69]  Michael P Vitek,et al.  Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways , 2007, Proceedings of the National Academy of Sciences.

[70]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[71]  张志勇,et al.  Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs , 2009 .

[72]  Nathaniel B. Sawtell,et al.  Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems. , 2017, Annual review of physiology.

[73]  Liu Zeng-rong,et al.  Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs , 2009 .

[74]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[75]  J. Vercher,et al.  The oculomanual coordination control center takes into account the mechanical properties of the arm , 1999, Experimental Brain Research.

[76]  E. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems , 1976 .

[77]  W. H. F. Barnes The Nature of Explanation , 1944, Nature.

[78]  Christopher I. Byrnes,et al.  Structurally stable output regulation of nonlinear systems , 1997, Autom..

[79]  Jie Huang,et al.  Decentralized Adaptive Output Regulation for Large-Scale Nonlinear Systems 1 , 2001 .

[80]  L. Marconi,et al.  Output Stabilization via Nonlinear Luenberger Observers , 2006, SIAM J. Control. Optim..

[81]  Martin Faint,et al.  Does the brain model newton’s laws? , 2001 .

[82]  A. Isidori,et al.  Semiglobal nonlinear output regulation with adaptive internal model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[83]  V. O. Nikiforov,et al.  Adaptive Non-linear Tracking with Complete Compensation of Unknown Disturbances , 1998, Eur. J. Control.