Improved Switching among Temporally Abstract Actions

In robotics and other control applications it is commonplace to have a preexisting set of controllers for solving subtasks, perhaps hand-crafted or previously learned or planned, and still face a difficult problem of how to choose and switch among the controllers to solve an overall task as well as possible. In this paper we present a framework based on Markov decision processes and semi-Markov decision processes for phrasing this problem, a basic theorem regarding the improvement in performance that can be obtained by switching flexibly between given controllers, and example applications of the theorem. In particular, we show how an agent can plan with these high-level controllers and then use the results of such planning to find an even better plan, by modifying the existing controllers, with negligible additional cost and no re-planning. In one of our examples, the complexity of the problem is reduced from 24 billion state-action pairs to less than a million state-controller pairs.