Quantitative Error Analysis for the Reconstruction of Derivatives

We present a general Fourier-based method which provides an accurate prediction of the approximation error, when the derivative of a signal s(t) is continuously reconstructed from uniform point samples or generalized measurements on s. This formalism applies to a wide class of convolution-based techniques. It provides a key tool, the frequency error kernel, for designing computationally efficient reconstruction schemes which are near optimal in the least-squares sense.

[1]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[2]  H. Hauser,et al.  Mastering Windows: Improving Reconstruction , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[3]  Thierry Blu,et al.  Cardinal exponential splines: part I - theory and filtering algorithms , 2005, IEEE Transactions on Signal Processing.

[4]  Max A. Viergever,et al.  Quantitative evaluation of convolution-based methods for medical image interpolation , 2001, Medical Image Anal..

[5]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[6]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[7]  Thierry Blu,et al.  Quantitative Fourier Analysis of Approximation Techniques : Part I — Interpolators and Projectors , 1999 .

[8]  Herbert Hamers,et al.  Gradient Estimation Schemes for Noisy Functions , 2003 .

[9]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[10]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[11]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[12]  I. Selesnick Maximally flat low-pass digital differentiator , 2002 .

[13]  Laurent Condat,et al.  Gradient Estimation Revitalized , 2010, IEEE Transactions on Visualization and Computer Graphics.

[14]  Thierry Blu,et al.  Sampling of periodic signals: a quantitative error analysis , 2002, IEEE Trans. Signal Process..

[15]  Yonina C. Eldar,et al.  Nonideal sampling and interpolation from noisy observations in shift-invariant spaces , 2006, IEEE Transactions on Signal Processing.

[16]  Michael E. Goss,et al.  An adjustable gradient filter for volume visualization image enhancement , 1994 .

[17]  Thierry Blu,et al.  MOMS: maximal-order interpolation of minimal support , 2001, IEEE Trans. Image Process..

[18]  Dimitri Van De Ville,et al.  Quasi-Interpolating Spline Models for Hexagonally-Sampled Data , 2007, IEEE Transactions on Image Processing.

[19]  Thierry Blu,et al.  Linear interpolation revitalized , 2004, IEEE Transactions on Image Processing.

[20]  Thierry Blu,et al.  Wavelet theory demystified , 2003, IEEE Trans. Signal Process..

[21]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Thierry Blu,et al.  Nonideal Sampling and Regularization Theory , 2008, IEEE Transactions on Signal Processing.

[24]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[25]  Thierry Blu,et al.  Beyond interpolation: optimal reconstruction by quasi-interpolation , 2005, IEEE International Conference on Image Processing 2005.

[26]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[27]  G. Strang,et al.  A Fourier Analysis of the Finite Element Variational Method , 2011 .