Efficient Exact Inference in Planar Ising Models

We give polynomial-time algorithms for the exact computation of lowest-energy states, worst margin violators, partition functions, and marginals in certain binary undirected graphical models. Our approach provides an interesting alternative to the well-known graph cut paradigm in that it does not impose any submodularity constraints; instead we require planarity to establish a correspondence with perfect matchings in an expanded dual graph. Maximum-margin parameter estimation for a boundary detection task shows our approach to be efficient and effective. A C++ implementation is available from http://nic.schraudolph.org/isinf/.

[1]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[2]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[3]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[4]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[5]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[6]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[7]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[8]  L. Bieche,et al.  On the ground states of the frustration model of a spin glass by a matching method of graph theory , 1980 .

[9]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[10]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[11]  Silvio Micali,et al.  Priority queues with variable priority and an O(EV log V) algorithm for finding a maximal weighted matching in general graphs , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  J. Bunch A Note on the Stable Decomposition of Skew-Symmetric Matrices , 1982 .

[13]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[14]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[15]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[16]  Noga Alon,et al.  The Probabilistic Method , 1992, SODA.

[17]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[18]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[20]  Kurt Mehlhorn,et al.  Implementation of O (nm log n) Weighted Matchings in General Graphs. The Power of Data Structures , 2000, Algorithm Engineering.

[21]  David S. Watkins,et al.  Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .

[22]  M. Opper,et al.  Comparing the Mean Field Method and Belief Propagation for Approximate Inference in MRFs , 2001 .

[23]  C. Fox,et al.  Exact MAP states and expectations from perfect sampling: Greig, porteous and seheult revisited , 2001 .

[24]  Kurt Mehlhorn,et al.  Implementation of O(nmlogn) weighted matchings in general graphs: the power of data structures , 2002, JEAL.

[25]  Martial Hebert,et al.  Discriminative Fields for Modeling Spatial Dependencies in Natural Images , 2003, NIPS.

[26]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[27]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[28]  Jonathan L. Gross,et al.  Topological Graph Theory , 2003, Handbook of Graph Theory.

[29]  Petra Mutzel,et al.  Graph Embedding with Minimum Depth and Maximum External Face , 2003, Graph Drawing.

[30]  Martin J. Wainwright,et al.  Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.

[31]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Nando de Freitas,et al.  From Fields to Trees , 2004, UAI.

[33]  John M. Boyer Additional PC-Tree Planarity Conditions , 2004, Graph Drawing.

[34]  Martin J. Wainwright,et al.  A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.

[35]  S. V. N. Vishwanathan,et al.  Fast Computation of Graph Kernels , 2006, NIPS.

[36]  Tommi S. Jaakkola,et al.  Approximate inference using planar graph decomposition , 2006, NIPS.

[37]  Martial Hebert,et al.  Discriminative Random Fields , 2006, International Journal of Computer Vision.

[38]  Mark W. Schmidt,et al.  Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.

[39]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  A. Middleton,et al.  Matching Kasteleyn Cities for Spin Glass Ground States , 2007, 0706.2866.

[41]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Simon Günter,et al.  A Stochastic Quasi-Newton Method for Online Convex Optimization , 2007, AISTATS.

[43]  F. Liers,et al.  Exact ground states of large two-dimensional planar Ising spin glasses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  F. Liers,et al.  A Simple MAX-CUT Algorithm for Planar Graphs. , 2009 .