Depth-dependent blur adaptation

Variations in blur are present in retinal images of scenes containing objects at multiple depth planes. Here we examine whether neural representations of image blur can be recalibrated as a function of depth. Participants were exposed to textured images whose blur changed with depth in a novel manner. For one group of participants, image blur increased as the images moved closer; for the other group, blur increased as the images moved away. A comparison of post-test versus pre-test performances on a blur-matching task at near and far test positions revealed that both groups of participants showed significant experience-dependent recalibration of the relationship between depth and blur. These results demonstrate that blur adaptation is conditioned by 3D viewing contexts.