A hands-on-robot for accurate placement of pedicle screws

This paper presents a novel system for accurate placement of pedicle screws. The system consists of a new light-weight (<10 kg), kinematically redundant, and fully torque controlled robot. Additionally, the pose of the robot tool-center point is tracked by an optical navigation system, serving as an external reference source. Therefore, it is possible to measure and to compensate deviations between the intraoperative and the preoperatively planned pose. The robotic arm itself is impedance controlled. This allows for a new intuitive man-machine-interface as the joint units are equipped with torque sensors: the robot can be moved just by pulling/pushing its structure. The surgeon has full control of the robot at every step of the intervention. The hand-eye-coordination problems known from manual pedicle screw placement can be omitted

[1]  Alin Albu-Schäffer,et al.  On a new generation of torque controlled light-weight robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[2]  S R Garfin,et al.  Placement of pedicle screws in the thoracic spine. Part II: An anatomical and radiographic assessment. , 1995, The Journal of bone and joint surgery. American volume.

[3]  Brian L. Davies,et al.  The Acrobot system for total knee replacement , 2003, Ind. Robot.

[4]  Alin Albu-Schäffer,et al.  A passivity based Cartesian impedance controller for flexible joint robots - part II: full state feedback, impedance design and experiments , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Lerner Ej Computer-integrated surgery. , 1997, New Jersey medicine : the journal of the Medical Society of New Jersey.

[6]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[7]  A. Albu-Schäffer Regelung von Robotern mit elastischen Gelenken am Beispiel der DLR-Leichtbauarme , 2002 .

[8]  E. Sim,et al.  Location of transpedicular screws for fixation of the lower thoracic and lumbar spine. Computed tomography of 45 fracture cases. , 1993, Acta orthopaedica Scandinavica.

[9]  Nobuhiko Hata,et al.  A Motion Adaptable Needle Placement Instrument Based on Tumor Specific Ultrasonic Image Segmentation , 2002, MICCAI.

[10]  Gerd Hirzinger,et al.  Optimal Design of a Medical Robot for Minimally Invasive Surgery , 2003 .

[11]  Christian Ott,et al.  Passivity Based Cartesian Impedance Control for Flexible Joint Manipulators , 2004 .

[12]  E H Kuner,et al.  [Significance of ligamentotaxis for internal fixator osteosynthesis in fractures of thoracic and lumbar vertebrae]. , 1992, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[13]  S. Gertzbein,et al.  Accuracy of Pedicular Screw Placement In Vivo , 1990, Spine.

[14]  John Kenneth Salisbury,et al.  The Intuitive/sup TM/ telesurgery system: overview and application , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  G. Hirzinger,et al.  Auslegungsoptimierung einer hochpoligen einzelpolbewickelten permanenterregten Synchronmaschine , 2004 .

[16]  G. Hirzinger,et al.  Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation , 1997, IEEE Engineering in Medicine and Biology Magazine.

[17]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[18]  Russell H. Taylor,et al.  Medical Robotic Systems in Computer-Integrated Surgery , 2003 .

[19]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[20]  Min-Seok Kim,et al.  복강경 수술용 도구의 실시간 영상 추적 및 복강경 조종기의 지능형 제어 방법 = Real-time visual servoing for laparoscopic surgery , 2003 .

[21]  Tobias Ortmaier,et al.  Motion Compensation in Minimally Invasive Robotic Surgery , 2003 .

[22]  Alin Albu-Schäffer,et al.  Kartesische Impedanzregelung von Robotern mit elastischen Gelenken: Ein passivitätsbasierter Ansatz (Cartesian Impedance Control of Flexible Joint Robots: A Passivity Based Approach) , 2005, Autom..

[23]  Russell H. Taylor,et al.  Medical robotics in computer-integrated surgery , 2003, IEEE Trans. Robotics Autom..

[24]  Alin Albu-Schäffer,et al.  A passivity based Cartesian impedance controller for flexible joint robots - part I: torque feedback and gravity compensation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Bernhard Kübler,et al.  Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.