Parameters identification of photovoltaic models using an improved JAYA optimization algorithm

Abstract Parameters identification of photovoltaic (PV) models based on measured current-voltage characteristic curves is significant for the simulation, evaluation, and control of PV systems. To accurately and reliably identify the parameters of different PV models, an improved JAYA (IJAYA) optimization algorithm is proposed in the paper. In IJAYA, a self-adaptive weight is introduced to adjust the tendency of approaching the best solution and avoiding the worst solution at different search stages, which enables the algorithm to approach the promising area at the early stage and implement the local search at the later stage. Furthermore, an experience-based learning strategy is developed and employed randomly to maintain the population diversity and enhance the exploration ability. A chaotic elite learning method is proposed to refine the quality of the best solution in each generation. The proposed IJAYA is used to solve the parameters identification problems of different PV models, i.e., single diode, double diode, and PV module. Comprehensive experiment results and analyses indicate that IJAYA can obtain a highly competitive performance compared with other state-of-the-state algorithms, especially in terms of accuracy and reliability.

[1]  Renquan Lu,et al.  Learning backtracking search optimisation algorithm and its application , 2017, Inf. Sci..

[2]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[3]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[4]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[5]  Yifeng Chen,et al.  Parameters extraction from commercial solar cells I-V characteristics and shunt analysis , 2011 .

[6]  Dalia Yousri,et al.  Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm , 2016 .

[7]  Feng Zou,et al.  Teaching-learning-based optimization with learning experience of other learners and its application , 2015, Appl. Soft Comput..

[8]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[9]  Jan Taler,et al.  Dimensional optimization of a micro-channel heat sink using Jaya algorithm , 2016 .

[10]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[11]  R. Venkata Rao,et al.  A multi-objective algorithm for optimization of modern machining processes , 2017, Eng. Appl. Artif. Intell..

[12]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[13]  Mohamed A. Awadallah,et al.  Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data , 2016 .

[14]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[15]  R. V. Rao,et al.  Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm , 2017 .

[16]  Norman Mariun,et al.  Optimal Power Flow Using the Jaya Algorithm , 2016 .

[17]  R. Venkata Rao,et al.  A new optimization algorithm for solving complex constrained design optimization problems , 2017 .

[18]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[19]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[20]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[21]  B. Arredondo,et al.  Exact analytical solution of a two diode circuit model for organic solar cells showing S-shape using Lambert W-functions , 2012 .

[22]  Meng Wu,et al.  A New Gap Function for Vector Variational Inequalities with an Application , 2013, J. Appl. Math..

[23]  R. Venkata Rao,et al.  Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration , 2017 .

[24]  Xin Wang,et al.  An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems , 2016, J. Intell. Manuf..

[25]  Ashish K. Panchal,et al.  Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm , 2014 .

[26]  Ahmad Rezaee Jordehi,et al.  Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules , 2016 .

[27]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[28]  Leandro dos Santos Coelho,et al.  Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach , 2015 .

[29]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[30]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[31]  R. Rao Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems , 2016 .

[32]  Huaglory Tianfield,et al.  Biogeography-based learning particle swarm optimization , 2016, Soft Computing.

[33]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[34]  Sugandh P. Singh,et al.  Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm , 2017, Eng. Appl. Artif. Intell..

[35]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[36]  Kumar Abhishek,et al.  Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA , 2017, Engineering with Computers.

[37]  Pravat Kumar Ray,et al.  Power Quality Improvement Using Photovoltaic Fed DSTATCOM Based on JAYA Optimization , 2016, IEEE Transactions on Sustainable Energy.

[38]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[39]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[40]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[41]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[42]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[43]  R. Venkata Rao,et al.  Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm , 2017 .

[44]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[45]  R. Venkata Rao,et al.  Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm , 2018 .

[46]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[47]  R. Venkata Rao,et al.  A self-adaptive multi-population based Jaya algorithm for engineering optimization , 2017, Swarm Evol. Comput..

[48]  Bijaya K. Panigrahi,et al.  Rapid MPPT for Uniformly and Partial Shaded PV System by Using JayaDE Algorithm in Highly Fluctuating Atmospheric Conditions , 2017, IEEE Transactions on Industrial Informatics.

[49]  Huaglory Tianfield,et al.  Biogeography-based optimization with covariance matrix based migration , 2016, Appl. Soft Comput..