Genetic Programming for Multiscale Modeling

We propose the use of genetic programming (GP)—a genetic algorithm that evolves computer programs—for bridging simulation methods across multiple scales of time and/or length. The effectiveness of genetic programming in multiscale simulation is demonstrated using two illustrative, non-trivial case studies in science and engineering. The first case is multi-timescale materials kinetics modeling, where genetic programming is used to symbolically regress a mapping of all diffusion barriers from only a few calculated ones, thereby avoiding explicit calculation of all the barriers. The GP-regressed barrier function enables use of kinetic Monte Carlo for realistic potentials and simulation of realistic experimental times (seconds). Specifically, a GP regression is applied to vacancy-assisted migration on a surface of a binary alloy and predict the diffusion barriers within 0.1–1% error using 3% (or less) of the barriers. The second case is the development of constitutive relation between macroscopic variables using measured data, where GP is used to evolve both the function form of the constitutive equation as well as the coefficient values. Specifically, GP regression is used for developing a constitutive relation between flow stress and temperature-compensated strain rate based on microstructural characterization for an aluminum alloy AA7055. We not only reproduce a constitutive relation proposed in literature, but also develop a new constitutive equation that fits both low-strain-rate and high-strainrate data. We hope these disparate example applications exemplify the power of GP for multiscaling at the price, of course, of not knowing physical details at the intermediate scales.

[1]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[2]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[3]  L. Girifalco,et al.  Application of the Morse Potential Function to Cubic Metals , 1959 .

[4]  Peter J. Angeline,et al.  Genetic programming and emergent intelligence , 1994 .

[5]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[6]  M. E. Kassner,et al.  Five-power-law creep in single phase metals and alloys , 2000 .

[7]  Peter J. Angeline,et al.  Type Inheritance in Strongly Typed Genetic Programming , 1996 .

[8]  B. Alder,et al.  Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres , 1960 .

[9]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[10]  Jonathan A. Dantzig,et al.  High temperature deformation and hot rolling of AA7055 , 2003 .

[11]  J. K. Kinnear,et al.  Alternatives in automatic function definition: a comparison of performance , 1994 .

[12]  John W. Wilkins,et al.  Simple bias potential for boosting molecular dynamics with the hyperdynamics scheme , 1998 .

[13]  James P. Sethna,et al.  Simulations of energetic beam deposition: From picoseconds to seconds , 1998 .

[14]  David E. Goldberg,et al.  BUILDING-BLOCK SUPPLY IN GENETIC PROGRAMMING , 2003 .

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[17]  Barkema,et al.  Event-Based Relaxation of Continuous Disordered Systems. , 1996, Physical review letters.

[18]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[19]  Arun M. Gokhale,et al.  Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization , 1998 .

[20]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[21]  R. Catalin Picu Foreword to Special Issue on Linking Discrete and Continuum Models , 2003 .

[22]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[23]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[24]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[25]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[26]  Jacob Fish,et al.  Constitutive Modeling Based on Atomistics , 2003 .

[27]  Michèle Sebag,et al.  Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics , 2001, Appl. Soft Comput..

[28]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[29]  K. P. N. Murthy,et al.  Monte Carlo Methods in Statistical Physics , 2004 .

[30]  J. L. Bocquet,et al.  On-the-Fly Evaluation of Diffusional Parameters during a Monte Carlo Simulation of Diffusion in Alloys: a Challenge , 2002 .

[31]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[32]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[33]  Laurent J. Lewis,et al.  Self-diffusion of adatoms, dimers, and vacancies on Cu(100) , 1997 .

[34]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[35]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[36]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[37]  Hamilton,et al.  Dislocation Mechanism for Island Diffusion on fcc (111) Surfaces. , 1995, Physical review letters.

[38]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[39]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[40]  Justinian P. Rosca,et al.  Discovery of subroutines in genetic programming , 1996 .

[41]  D. Goldberg,et al.  Probabilistic Model Building and Competent Genetic Programming , 2003 .

[42]  M. Keijzer,et al.  Genetic programming as a model induction engine , 2000 .

[43]  A. Voter,et al.  Temperature-accelerated dynamics for simulation of infrequent events , 2000 .

[44]  Yong Chen Model order reduction for nonlinear systems , 1999 .

[45]  Frédéric Soisson,et al.  Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers , 2002 .

[46]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[47]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[48]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[49]  R. Catalin Picu A Nonlocal Formulation of Rubber Elasticity , 2003 .

[50]  M. J. Fluss,et al.  Self-decay-induced damage production and micro-structure evolution in fcc metals: An atomic-scale computer simulation approach , 1998 .

[51]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[52]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[53]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[54]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[55]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[56]  Armand Joseph Beaudoin,et al.  Investigation of texture and fracture toughness in AA 7050 plate , 1998 .

[57]  Jacob K. White,et al.  Emerging simulation approaches for micromachined devices , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[58]  Amiya K. Mukherjee,et al.  High-Temperature Creep , 1975 .

[59]  Maurice de Koning,et al.  Importance sampling of rare transition events in Markov processes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Gerard T. Barkema,et al.  The activation–relaxation technique: an efficient algorithm for sampling energy landscapes , 2001 .

[61]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[62]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[63]  P. F. Joseph,et al.  Multiscale Modeling of Deformation and Fracture of Polycrystalline Lamellar g -TiAl + a 2 -Ti 3 Al Alloys , 2003 .