Computing on Functions Using Randomized Vector Representations (in brief)

Vector space models for symbolic processing that encode symbols by random vectors have been proposed in cognitive science and connectionist communities under the names Vector Symbolic Architecture (VSA), and, synonymously, Hyperdimensional (HD) computing. In this paper, we generalize VSAs to function spaces by mapping continuous-valued data into a vector space such that the inner product between the representations of any two data points represents a similarity kernel. By analogy to VSA, we call this new function encoding and computing framework Vector Function Architecture (VFA). In VFAs, vectors can represent individual data points as well as elements of a function space (a reproducing kernel Hilbert space). The algebraic vector operations, inherited from VSA, correspond to well-defined operations in function space. Furthermore, we study a previously proposed method for encoding continuous data, fractional power encoding (FPE), which uses exponentiation of a random base vector to produce randomized representations of data points and fulfills the kernel properties for inducing a VFA. We show that the distribution from which elements of the base vector are sampled determines the shape of the FPE kernel, which in turn induces a VFA for computing with band-limited functions. In particular, VFAs provide an algebraic framework for implementing large-scale kernel machines with random features, extending Rahimi and Recht (2007). Finally, we demonstrate several applications of VFA models to problems in image recognition, density estimation and nonlinear regression. Our analyses and results suggest that VFAs constitute a powerful new framework for representing and manipulating functions in distributed neural systems, with myriad applications in artificial intelligence.

[1]  Michael N Jones,et al.  Representing word meaning and order information in a composite holographic lexicon. , 2007, Psychological review.

[2]  Marco Marelli,et al.  Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions , 2019, Perspectives on psychological science : a journal of the Association for Psychological Science.

[3]  Terrence C. Stewart,et al.  A neural representation of continuous space using fractional binding , 2019, CogSci.

[4]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[5]  S. V. Slipchenko,et al.  Randomized projective methods for the construction of binary sparse vector representations , 2012 .

[6]  Ingrid K. Glad,et al.  Correction of Density Estimators that are not Densities , 2003 .

[7]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[8]  Tony Plate,et al.  Holographic Recurrent Networks , 1992, NIPS.

[9]  Chris Eliasmith,et al.  The third contender: A critical examination of the Dynamicist theory of cognition , 1996 .

[10]  J. Dupuy,et al.  Reproducing kernels based schemes for nonparametric regression , 2020, 2001.11213.

[11]  T. Gelder,et al.  Mind as Motion: Explorations in the Dynamics of Cognition , 1995 .

[12]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[13]  Tony Plate,et al.  Estimating Analogical Similarity by Dot-Products of Holographic Reduced Representations , 1993, NIPS.

[14]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[15]  Bruno A. Olshausen,et al.  Resonator Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Structures , 2020, Neural Computation.

[16]  Trevor Cohen,et al.  Reasoning with vectors: A continuous model for fast robust inference , 2015, Log. J. IGPL.

[17]  Brent Komer,et al.  Efficient navigation using a scalable, biologically inspired spatial representation , 2020, CogSci.

[18]  F. Sommer,et al.  A framework for linking computations and rhythm-based timing patterns in neural firing, such as phase precession in hippocampal place cells , 2018 .

[19]  Estimation of a quadratic regression functional using the sinc kernel , 2007 .

[20]  Zenon W. Pylyshyn,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[21]  Tony A. Plate,et al.  Holographic reduced representations , 1995, IEEE Trans. Neural Networks.

[22]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[23]  Dmitri A. Rachkovskij,et al.  Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning , 2001, Neural Computation.

[24]  Jan M. Rabaey,et al.  High-Dimensional Computing as a Nanoscalable Paradigm , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Paul Thagard,et al.  Concepts as Semantic Pointers: A Framework and Computational Model , 2016, Cogn. Sci..

[26]  K. B. Davis Mean Integrated Square Error Properties of Density Estimates , 1977 .

[27]  J. Rabaey,et al.  A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition , 2020, Nature Electronics.

[28]  Dmitri A. Rachkovskij,et al.  SIMILARITY‐BASED RETRIEVAL WITH STRUCTURE‐SENSITIVE SPARSE BINARY DISTRIBUTED REPRESENTATIONS , 2012, Comput. Intell..

[29]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[30]  Friedrich T. Sommer,et al.  Robust computation with rhythmic spike patterns , 2019, Proceedings of the National Academy of Sciences.

[31]  Luca Benini,et al.  Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG Signals , 2019, Proceedings of the IEEE.

[32]  Denis Kleyko,et al.  Autoscaling Bloom filter: controlling trade-off between true and false positives , 2017, Neural Computing and Applications.

[33]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[34]  Brent Komer,et al.  Biologically Inspired Spatial Representation , 2020 .

[35]  Jan M. Rabaey,et al.  Vector Symbolic Architectures as a Computing Framework for Nanoscale Hardware , 2021, ArXiv.

[36]  Aaron R. Voelker A short letter on the dot product between rotated Fourier transforms , 2020, ArXiv.

[37]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[38]  J. Goodman Speckle Phenomena in Optics: Theory and Applications , 2020 .

[39]  Lukas Gonon,et al.  Discrete-Time Signatures and Randomness in Reservoir Computing , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[40]  Tony Plate,et al.  Holographic Reduced Representations: Convolution Algebra for Compositional Distributed Representations , 1991, IJCAI.

[41]  Todorka Kovacheva,et al.  LINEAR CLASSIFIERS BASED ON BINARY DISTRIBUTED REPRESENTATIONS , 2007 .

[42]  Klaus Greff,et al.  On the Binding Problem in Artificial Neural Networks , 2020, ArXiv.

[43]  C. Eliasmith,et al.  Accurate representation for spatial cognition using grid cells , 2020, CogSci.

[44]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[45]  Chris Eliasmith,et al.  Representing spatial relations with fractional binding , 2019, CogSci.

[46]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[47]  K. B. Davis,et al.  Mean Square Error Properties of Density Estimates , 1975 .

[48]  Kaspar Anton Schindler,et al.  A Primer on Hyperdimensional Computing for iEEG Seizure Detection , 2021, Frontiers in Neurology.

[49]  Friedrich T. Sommer,et al.  When Can Dictionary Learning Uniquely Recover Sparse Data From Subsamples? , 2011, IEEE Transactions on Information Theory.

[50]  Lewenstein,et al.  Optimal storage of correlated patterns in neural-network memories. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  Alexander Legalov,et al.  Associative synthesis of finite state automata model of a controlled object with hyperdimensional computing , 2017, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society.

[52]  Stefano Fusi,et al.  Why neurons mix: high dimensionality for higher cognition , 2016, Current Opinion in Neurobiology.

[53]  Velio A. Marsocci An Error Analysis of Electronic Analog Computers , 1956, IRE Trans. Electron. Comput..

[54]  P. Gács,et al.  Algorithms , 1992 .

[55]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[56]  Emmanuel Dupoux,et al.  Holographic String Encoding , 2011, Cogn. Sci..

[57]  Peter Exterkate Modelling Issues in Kernel Ridge Regression , 2011 .

[58]  D. Smith,et al.  A random walk in Hamming space , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[59]  Michael N. Jones,et al.  Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation , 2015, Comput. Intell. Neurosci..

[60]  M. Ledoux The concentration of measure phenomenon , 2001 .

[61]  G. Schöner,et al.  Dynamic Field Theory of Movement Preparation , 2022 .

[62]  Ross W. Gayler Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience , 2004, ArXiv.

[63]  Friedrich T. Sommer,et al.  Variable Binding for Sparse Distributed Representations: Theory and Applications , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[64]  Jan M. Rabaey,et al.  Classification and Recall With Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping Characteristics , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[65]  L. Devroye A Note on the Usefulness of Superkernels in Density Estimation , 1992 .

[66]  Jussi H. Poikonen,et al.  High-dimensional computing with sparse vectors , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[67]  Ross W. Gayler,et al.  Multiplicative Binding, Representation Operators & Analogy , 1998 .

[68]  Nikolaos Papakonstantinou,et al.  Hyperdimensional Computing in Industrial Systems: The Use-Case of Distributed Fault Isolation in a Power Plant , 2018, IEEE Access.

[69]  Graham Cormode,et al.  An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.

[70]  Sanjoy Dasgupta,et al.  A neural algorithm for a fundamental computing problem , 2017 .

[71]  Alexander V. Goltsev,et al.  An assembly neural network for texture segmentation , 1996, Neural Networks.

[72]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[73]  E.J. Candes Compressive Sampling , 2022 .

[74]  Ivan Tyukin,et al.  Blessing of dimensionality: mathematical foundations of the statistical physics of data , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[75]  Friedrich T. Sommer,et al.  Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication , 2010, NIPS.

[76]  Geoffrey E. Hinton,et al.  Distributed representations and nested compositional structure , 1994 .

[77]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[78]  Eric A. Weiss,et al.  The Hyperdimensional Stack Machine , 2018 .

[79]  Dmitri A. Rachkovskij,et al.  Neural Distributed Autoassociative Memories: A Survey , 2017, ArXiv.

[80]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[81]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[82]  Dominic Widdows,et al.  Geometry and Meaning , 2004, Computational Linguistics.

[83]  Wenxing Ye,et al.  A Geometric Construction of Multivariate Sinc Functions , 2012, IEEE Transactions on Image Processing.

[84]  Pentti Kanerva,et al.  Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors , 2009, Cognitive Computation.

[85]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[86]  H. Sompolinsky,et al.  Sparseness and Expansion in Sensory Representations , 2014, Neuron.

[87]  Peter Blouw,et al.  Simulating and Predicting Dynamical Systems With Spatial Semantic Pointers , 2021, Neural Computation.

[88]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[89]  Aditya Joshi,et al.  Language Geometry Using Random Indexing , 2016, QI.

[90]  Sridevi V. Sarma,et al.  A Novel Nonparametric Maximum Likelihood Estimator for Probability Density Functions , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[92]  Peer Neubert,et al.  An Introduction to Hyperdimensional Computing for Robotics , 2019, KI - Künstliche Intelligenz.

[93]  Andreas T. Schaefer,et al.  Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. , 2003, Journal of neurophysiology.

[94]  Pentti Kanerva,et al.  Fully Distributed Representation , 1997 .

[95]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[96]  Geoffrey E. Hinton Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems , 1991 .

[97]  Dmitri A. Rachkovskij,et al.  Representation and Processing of Structures with Binary Sparse Distributed Codes , 2001, IEEE Trans. Knowl. Data Eng..

[98]  Evgeny Osipov,et al.  Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[99]  Friedrich T. Sommer,et al.  A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks , 2018, Neural Computation.

[100]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[101]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[102]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[103]  Pentti Kanerva,et al.  Binary Spatter-Coding of Ordered K-Tuples , 1996, ICANN.

[104]  Colin Raffel,et al.  Thermometer Encoding: One Hot Way To Resist Adversarial Examples , 2018, ICLR.

[105]  John W. Clark,et al.  Neural Representation of Probabilistic Information , 2001, Neural Computation.

[106]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[107]  M. Aizerman,et al.  Theoretical foundation of potential functions method in pattern recognition , 2019 .

[108]  Pedro M. Domingos,et al.  Every Model Learned by Gradient Descent Is Approximately a Kernel Machine , 2020, ArXiv.

[109]  Okko Johannes Räsänen,et al.  Sequence Prediction With Sparse Distributed Hyperdimensional Coding Applied to the Analysis of Mobile Phone Use Patterns , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[110]  Geoffrey E. Hinton,et al.  Deep learning for AI , 2021, Commun. ACM.

[111]  Javier Snaider,et al.  Modular Composite Representation , 2014, Cognitive Computation.

[112]  R. Potthast,et al.  Inverse problems in dynamic cognitive modeling. , 2009, Chaos.

[113]  俊一 甘利 5分で分かる!? 有名論文ナナメ読み:Jacot, Arthor, Gabriel, Franck and Hongler, Clement : Neural Tangent Kernel : Convergence and Generalization in Neural Networks , 2020 .

[114]  Paul Thagard,et al.  Integrating structure and meaning: a distributed model of analogical mapping , 2001 .