Molecular Systems Biology and Control

This paper, prepared for a tutorial at the 2005 IEEE Conference on Decision and Control, presents an introduction to molecular systems biology and some associated problems in control theory. It provides an introduction to basic biological concepts, describes several questions in dynamics and control that arise in the field, and argues that new theoretical problems arise naturally in this context. A final section focuses on the combined use of graph-theoretic, qualitative knowledge about monotone building-blocks and steady-state step responses for components.

[1]  C. Widmann,et al.  Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. , 1999, Physiological reviews.

[2]  James P. Keener,et al.  Mathematical physiology , 1998 .

[3]  E. N. Dancer Some remarks on a boundedness assumption for monotone dynamical systems , 1998 .

[4]  Eduardo Sontag,et al.  Global attractivity, I/O monotone small-gain theorems, and biological delay systems , 2005 .

[5]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[6]  R. Jackson,et al.  General mass action kinetics , 1972 .

[7]  Eduardo D. Sontag,et al.  Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data , 2004, Bioinform..

[8]  Eduardo D Sontag,et al.  On the stability of a model of testosterone dynamics , 2004, Journal of mathematical biology.

[9]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[10]  Eduardo D. Sontag,et al.  Diagonal stability of a class of cyclic systems and its connection with the secant criterion , 2006, Autom..

[11]  Eduardo Sontag,et al.  Optimal Length and Signal Amplification in Weakly Activated Signal Transduction Cascades , 2003, math/0311357.

[12]  David Angeli,et al.  Multistability in monotone I/O systems , 2004 .

[13]  E. Wimmer,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2022 .

[14]  David Angeli,et al.  A small-gain theorem for almost global convergence of monotone systems , 2004, Syst. Control. Lett..

[15]  S. Kauffman,et al.  Activities and sensitivities in boolean network models. , 2004, Physical review letters.

[16]  Eduardo D. Sontag,et al.  COMPUTATION OF AMPLIFICATION FOR SYSTEMS ARISING FROM CELLULAR SIGNALING PATHWAYS , 2004 .

[17]  E.D. Sontag,et al.  An analysis of a circadian model using the small-gain approach to monotone systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[18]  Eduardo Sontag,et al.  Diagonal Stability for a Class of Cyclic Systems and Applications , 2005 .

[19]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Devreotes,et al.  Kinetics and concentration dependence of reversible cAMP-induced modification of the surface cAMP receptor in Dictyostelium. , 1985, The Journal of biological chemistry.

[21]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[22]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[23]  S. Kauffman A proposal for using the ensemble approach to understand genetic regulatory networks. , 2004, Journal of theoretical biology.

[24]  A. Kremling,et al.  Modular analysis of signal transduction networks , 2004, IEEE Control Systems.

[25]  Pablo A. Iglesias,et al.  A general framework for achieving integral control in chemotactic biological signaling mechanisms , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[26]  Eduardo Sontag,et al.  Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach. , 2006, Systems biology.

[27]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[28]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[29]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[30]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[31]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[32]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[33]  James E. Ferrell,et al.  The JNK Cascade as a Biochemical Switch in Mammalian Cells Ultrasensitive and All-or-None Responses , 2003, Current Biology.

[34]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Haccou Mathematical Models of Biology , 2022 .

[36]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[37]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[38]  Piotr Berman,et al.  Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks , 2007, Discret. Appl. Math..

[39]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[40]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[41]  Eduardo Sontag,et al.  Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. , 2005, Journal of theoretical biology.

[42]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[43]  Jaakko Astola,et al.  The role of certain Post classes in Boolean network models of genetic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[46]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[47]  David Angeli,et al.  Multi-stability in monotone input/output systems , 2003, Syst. Control. Lett..

[48]  John J. Tyson,et al.  Existence of periodic solutions for negative feedback cellular control systems , 1977 .

[49]  Eduardo D. Sontag,et al.  Spaces of Observables in Nonlinear Control , 1995 .

[50]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[51]  Tomáš Gedeon,et al.  Cyclic Feedback Systems , 1998 .

[52]  James M. Bower,et al.  A logical model of cis-regulatory control in a eukaryotic system , 2001 .

[53]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[54]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[55]  David Angeli,et al.  Remarks on monotonicity and convergence in chemical reaction networks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[56]  Eduardo Sontag,et al.  Steady-states of receptor-ligand dynamics: a theoretical framework. , 2004, Journal of theoretical biology.

[57]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[58]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[59]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Eduardo Sontag,et al.  Monotone Chemical Reaction Networks , 2007 .

[61]  D. J. Allwright,et al.  A global stability criterion for simple control loops , 1977 .

[62]  H. Berg Motile Behavior of Bacteria , 2000 .

[63]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[64]  David Angeli,et al.  A tutorial on monotone systems- with an application to chemical reaction networks , 2004 .

[65]  E. D. Sontagc,et al.  Nonmonotone systems decomposable into monotone systems with negative feedback , 2005 .

[66]  E D Sontag For Differential Equations with r Parameters, 2r+1 Experiments Are Enough for Identification , 2003, J. Nonlinear Sci..

[67]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[68]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[69]  Eduardo D. Sontag,et al.  Oscillation in multi-stable monotone system with slowly varying positive feedback , 2005 .

[70]  O. Berg A model for the statistical fluctuations of protein numbers in a microbial population. , 1978, Journal of theoretical biology.

[71]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Othmer The qualitative dynamics of a class of biochemical control circuits , 1976, Journal of mathematical biology.

[73]  Reinhart Heinrich,et al.  Mathematical models of protein kinase signal transduction. , 2002, Molecular cell.

[74]  H. Smith,et al.  Oscillations and multiple steady states in a cyclic gene model with repression , 1987, Journal of mathematical biology.

[75]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[76]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  David Angeli,et al.  On predator-prey systems and small-gain theorems. , 2004, Mathematical biosciences and engineering : MBE.

[79]  Eduardo D. Sontag,et al.  Nonmonotone systems decomposable into monotone systems with negative feedback , 2006 .

[80]  David Angeli,et al.  Interconnections of Monotone Systems with Steady-State Characteristics , 2004 .

[81]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Eduardo D. Sontag,et al.  Monotone systems under positive feedback: multistability and a reduction theorem , 2005, Syst. Control. Lett..

[83]  C. Thron The secant condition for instability in biochemical feedback control—I. The role of cooperativity and saturability , 1991 .

[84]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[85]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[86]  E D Sontag,et al.  Some new directions in control theory inspired by systems biology. , 2004, Systems biology.

[87]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[88]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  N. Blackstone,et al.  Molecular Biology of the Cell.Fourth Edition.ByBruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and, Peter Walter.New York: Garland Science.$102.00. xxxiv + 1463 p; ill.; glossary (G:1–G:36); index (I:1–I:49); tables (T:1). ISBN: 0–8153–3218–1. [CD‐ROM included.] 2002. , 2003 .

[90]  J. Ferrell Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. , 1996, Trends in biochemical sciences.

[91]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[92]  Eduardo D. Sontag,et al.  State-estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero Deficiency Type , 2002, Eur. J. Control.

[93]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[94]  Jiang Jifa,et al.  On the Global Stability of Cooperative Systems , 1994 .

[95]  Eduardo D. Sontag,et al.  Gains and optimal design in signaling pathways , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[96]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[97]  T. McKeithan,et al.  Kinetic proofreading in T-cell receptor signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  P. E. Rapp,et al.  A theoretical investigation of a large class of biochemical oscillators , 1975 .

[99]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Chris Cosner,et al.  Book Review: Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems , 1996 .

[101]  J. Demongeot,et al.  Positive and negative feedback: striking a balance between necessary antagonists. , 2002, Journal of theoretical biology.

[102]  Eduardo D. Sontag,et al.  Adaptation and regulation with signal detection implies internal model , 2003, Syst. Control. Lett..

[103]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[104]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[105]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.