Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm

CANDECOMP/PARAFAC (CP) approximates multiway data by sum of rank-1 tensors. Unlike matrix decomposition, the procedure which estimates the best rank- R tensor approximation through R sequential best rank-1 approximations does not work for tensors, because the deflation does not always reduce the tensor rank. In this paper, we propose a novel deflation method for the problem. When one factor matrix of a rank- R CP decomposition is of full column rank, the decomposition can be performed through (R-1) rank-1 reductions. At each deflation stage, the residue tensor is constrained to have a reduced multilinear rank. For decomposition of order-3 tensors of size R×R×R and rank- R, estimation of one rank-1 tensor has a computational cost of O(R3) per iteration which is lower than the cost O(R4) of the ALS algorithm for the overall CP decomposition. The method can be extended to tracking one or a few rank-one tensors of slow changes, or inspect variations of common patterns in individual datasets.

[1]  Laurent Albera,et al.  Multi-way space-time-wave-vector analysis for EEG source separation , 2012, Signal Process..

[2]  Andrzej Cichocki,et al.  Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis , 2015, IEEE Transactions on Signal Processing.

[3]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[4]  A. Atsawarungruangkit,et al.  Generating Correlation Matrices Based on the Boundaries of Their Coefficients , 2012, PloS one.

[5]  Lester W. Mackey,et al.  Deflation Methods for Sparse PCA , 2008, NIPS.

[6]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[7]  Zbynek Koldovský,et al.  Weight Adjusted Tensor Method for Blind Separation of Underdetermined Mixtures of Nonstationary Sources , 2011, IEEE Transactions on Signal Processing.

[8]  Andrzej Cichocki,et al.  Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..

[9]  E. Masoud,et al.  Space-Time Block Coding for Wireless Communications , 2008 .

[10]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[11]  Nicholas D. Sidiropoulos,et al.  Parafac techniques for signal separation , 2000 .

[12]  P. White The Computation of Eigenvalues and Eigenvectors of a Matrix , 1958 .

[13]  A. Stegeman On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .

[14]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[15]  Andrzej Cichocki,et al.  CANDECOMP/PARAFAC Decomposition of High-Order Tensors Through Tensor Reshaping , 2012, IEEE Transactions on Signal Processing.

[16]  Gene H. Golub,et al.  A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[19]  E. E. Osborne,et al.  On Acceleration and Matrix Deflation Processes Used with the Power Method , 1958 .

[20]  Zbynek Koldovský,et al.  Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.

[21]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[22]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[23]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[24]  Andrzej Cichocki,et al.  Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting , 2015, ArXiv.

[25]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[26]  Andrzej Cichocki,et al.  Deflation method for CANDECOMP/PARAFAC tensor decomposition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[27]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[28]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[29]  Liqun Qi,et al.  On the successive supersymmetric rank‐1 decomposition of higher‐order supersymmetric tensors , 2007, Numer. Linear Algebra Appl..

[30]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[31]  Andrzej Cichocki,et al.  Rank Splitting for CANDECOMP/PARAFAC , 2015, LVA/ICA.

[32]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[33]  Andrzej Cichocki,et al.  On Fast algorithms for orthogonal Tucker decomposition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  A. Smilde,et al.  Deflation in multiblock PLS , 2001 .

[35]  Pierre Comon,et al.  Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.

[36]  Andrzej Cichocki,et al.  Tensor diagonalization - a new tool for PARAFAC and block-term decomposition , 2014, ArXiv.

[37]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[38]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[39]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[40]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[41]  Nikos D. Sidiropoulos,et al.  Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor , 2009, IEEE Transactions on Signal Processing.

[42]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[43]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[44]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[45]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[46]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.