Contraction after small transients

Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems including convergence to an attractor and entrainment to a periodic excitation. We consider three generalizations of contraction with respect to a norm that allow contraction to take place after small transients in time and/or amplitude. These generalized contractive systems?(GCSs) are useful for several reasons. First, we show that there exist simple and checkable conditions guaranteeing that a system is a GCS, and demonstrate their usefulness using several models from systems biology. Second, allowing small transients does not destroy the important asymptotic properties of contractive systems like convergence to a unique equilibrium point, if it exists, and entrainment to a periodic excitation. Third, in some cases as we change the parameters in a contractive system it becomes a?GCS just before it looses contractivity with respect to a norm. In this respect, generalized contractivity is the analogue of marginal stability in Lyapunov stability theory.

[1]  Luca Cardelli,et al.  Response dynamics of phosphorelays suggest their potential utility in cell signalling , 2010, Journal of The Royal Society Interface.

[2]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[3]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[4]  Michael Margaliot,et al.  Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene Translation , 2014, PloS one.

[5]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[6]  Michael Margaliot,et al.  Explicit Expression for the Steady-State Translation Rate in the Infinite-Dimensional Homogeneous Ribosome Flow Model , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  Michael Margaliot,et al.  Ribosome flow model with positive feedback , 2013, Journal of The Royal Society Interface.

[8]  M. Margaliot,et al.  Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach , 2014, Journal of The Royal Society Interface.

[9]  Alessandro Astolfi,et al.  Contraction and observer design on cones , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[11]  Verne C. Fryklund,et al.  What systems analysis? , 1981, Nature.

[12]  Michael Margaliot,et al.  Stability Analysis of the Ribosome Flow Model , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Isaac Meilijson,et al.  Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model , 2011, PLoS Comput. Biol..

[14]  Murat Arcak,et al.  Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems , 2011, Autom..

[15]  Francesco Bullo,et al.  Contraction theory on Riemannian manifolds , 2014, Syst. Control. Lett..

[16]  Jean-Jacques E. Slotine,et al.  Control system design for mechanical systems using contraction theory , 2000, IEEE Trans. Autom. Control..

[17]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[18]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[19]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[20]  Nathan van de Wouw,et al.  Backstepping controller synthesis and characterizations of incremental stability , 2012, Syst. Control. Lett..

[21]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[22]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: References , 1985 .

[23]  R. A. Blythe,et al.  Nonequilibrium steady states of matrix-product form: a solver's guide , 2007, 0706.1678.

[24]  Mario di Bernardo,et al.  A Contraction Approach to the Hierarchical Analysis and Design of Networked Systems , 2013, IEEE Transactions on Automatic Control.

[25]  Michael Margaliot,et al.  On three generalizations of contraction , 2014, 53rd IEEE Conference on Decision and Control.

[26]  Pablo A. Parrilo,et al.  Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming , 2006, at - Automatisierungstechnik.

[27]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[28]  Michael Margaliot,et al.  On the Steady-State Distribution in the Homogeneous Ribosome Flow Model , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[29]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[30]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[31]  Zahra Aminzarey,et al.  Contraction methods for nonlinear systems: A brief introduction and some open problems , 2014, 53rd IEEE Conference on Decision and Control.

[32]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[33]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[34]  C. Desoer,et al.  The measure of a matrix as a tool to analyze computer algorithms for circuit analysis , 1972 .

[35]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[36]  G. Söderlind The logarithmic norm. History and modern theory , 2006 .

[37]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[38]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[39]  Zahra Aminzare,et al.  Logarithmic Lipschitz norms and diffusion-induced instability , 2012, Nonlinear analysis, theory, methods & applications.