Sparse and Redundant Representation Modeling—What Next?

Signal processing relies heavily on data models; these are mathematical constructions imposed on the data source that force a dimensionality reduction of some sort. The vast activity in signal processing during the past decades is essentially driven by an evolution of these models and their use in practice. In that respect, the past decade has been certainly the era of sparse and redundant representations, a popular and highly effective data model. This very appealing model led to a long series of intriguing theoretical and numerical questions, and to many innovative ideas that harness this model to real engineering problems. The new entries recently added to the IEEE-SPL EDICS reflect the popularity of this model and its impact on signal processing research and practice. Despite the huge success of this model so far, this field is still at its infancy, with many unanswered questions still remaining. This paper1 offers a brief presentation of the story of sparse and redundant representation modeling and its impact, and outlines ten key future research directions in this field.

[1]  Dustin G. Mixon,et al.  Two are better than one: Fundamental parameters of frame coherence , 2011, 1103.0435.

[2]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[3]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[4]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[5]  Rémi Gribonval,et al.  Sparse Representations in Audio and Music: From Coding to Source Separation , 2010, Proceedings of the IEEE.

[6]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[7]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[8]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[9]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[10]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[11]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  Yonina C. Eldar,et al.  Exploiting Statistical Dependencies in Sparse Representations for Signal Recovery , 2012, IEEE Transactions on Signal Processing.

[14]  Michael Elad,et al.  Redundant Wavelets on Graphs and High Dimensional Data Clouds , 2011, IEEE Signal Processing Letters.

[15]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[16]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[17]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[18]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[19]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[20]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[21]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mohammad Ali Masnadi-Shirazi,et al.  Sparse representation-based synthetic aperture radar imaging , 2011 .

[23]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[24]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[25]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[26]  Jean-Luc Starck,et al.  Stein block thresholding for wavelet-based image deconvolution , 2010 .

[27]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[28]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[29]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[30]  Karin Schnass,et al.  Dictionary Identification—Sparse Matrix-Factorization via $\ell_1$ -Minimization , 2009, IEEE Transactions on Information Theory.

[31]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[32]  Sebastian Kube,et al.  Two are better than One! Individuals’ Contributions to "Unpacked" Public Goods , 2009 .

[33]  Kjersti Engan,et al.  Multi-frame compression: theory and design , 2000, Signal Process..

[34]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[35]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[36]  Vasilis Ntziachristos,et al.  Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation , 2009, IEEE Transactions on Medical Imaging.

[37]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[38]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[39]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[40]  Emmanuel Cand Simple Bounds for Recovering Low-complexity Models , 2012 .

[41]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[42]  Huan Wang,et al.  On the local correctness of ℓ1-minimization for dictionary learning , 2011, 2014 IEEE International Symposium on Information Theory.

[43]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[44]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[45]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[46]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[47]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[48]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[49]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[50]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[51]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[52]  Michael Elad,et al.  Multi-Scale Dictionary Learning Using Wavelets , 2011, IEEE Journal of Selected Topics in Signal Processing.

[53]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[54]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[55]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[56]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[57]  Thomas Strohmer,et al.  Measure What Should be Measured: Progress and Challenges in Compressive Sensing , 2012, ArXiv.

[58]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[59]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.