A Survey of Architecture and Function of the Primary Visual Cortex (V1)

The largest visual area, known as the primary visual cortex or V1, has greatly contributed to the current understanding of mammalian and human visual pathways and their role in visual perception. The initial discovery of orientation-sensitive neurons in V1, arranged according to a retinotopic mapping, suggested an analogy to its function as a low-level feature analyzer. Subsequent discoveries of phase, spatial frequency, color, ocular origin, and direction-of-motion-sensitive neurons, arranged into overlapping maps, further lent support to the view that it performs a rich decomposition, similar to signal processing transforms, of the retinal output. Like the other cortical areas, V1 has a laminar organization with specialization for input from the relayed retinal afferents, output to the higher visual areas, and the segregation of the magno (motion) and parvo (form) pathways. Spatially lateral connections that exist between neurons of similar and varying properties have also been proposed to give rise to a computation of a bottom-up saliency map in V1. We provide a review of the selectivity of neurons in V1, laminar specialization and analogies to signal processing techniques, a model of V1 saliency computation, and higher-area feedback that may mediate perception.

[1]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[2]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[3]  G. Granlund In search of a general picture processing operator , 1978 .

[4]  Zhaoping Li Different Retinal Ganglion Cells have Different Functional Goals , 1992, Int. J. Neural Syst..

[5]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[6]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[7]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[8]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[9]  D. Hubel,et al.  Early Exploration of the Visual Cortex , 1998, Neuron.

[10]  Jeffrey Ng,et al.  Extrapolative Spatial Models for Detecting Perceptual Boundaries in Colour Images , 2007, International Journal of Computer Vision.

[11]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Zhaoping Li V1 mechanisms and some figure-ground and border effects. , 2003, Journal of physiology, Paris.

[14]  Zhaoping Li A saliency map in primary visual cortex , 2002, Trends in Cognitive Sciences.

[15]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[16]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[17]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[19]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[20]  Aniruddha Das,et al.  Cortical Maps: Where Theory Meets Experiments , 2005, Neuron.

[21]  Melvyn A. Goodale,et al.  Blindsight: A conscious route to unconscious vision , 2000, Current Biology.

[22]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[23]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[24]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[25]  Simon A. J. Winder,et al.  A Brief Survey of Central Mechanisms in Primate Visual Perception , 2002 .

[26]  A. Cowey PROJECTION OF THE RETINA ON TO STRIATE AND PRESTRIATE CORTEX IN THE SQUIRREL MONKEY, SAIMIRI SCIUREUS. , 1964, Journal of neurophysiology.

[27]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[28]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[29]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[30]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[31]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[32]  J. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[33]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[35]  D. Ts'o,et al.  Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. , 2002, Journal of neurophysiology.

[36]  P. O. Bishop,et al.  Linear analysis of the responses of simple cells in the cat visual cortex , 2004, Experimental Brain Research.

[37]  D. Pollen,et al.  Space-time spectra of complex cell filters in the macaque monkey: A comparison of results obtained with pseudowhite noise and grating stimuli , 1994, Visual Neuroscience.

[38]  Y. Frégnac Dynamics of functional connectivity in visual cortical networks: An overview , 1996, Journal of Physiology-Paris.

[39]  Zhaoping Li Understanding Ocular Dominance Development from Binocular Input Statistics , 1995 .

[40]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[41]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[42]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[43]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[44]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[45]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[47]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[48]  M. Young,et al.  Primary visual cortex neurons that contribute to resolve the aperture problem , 2006, Neuroscience.

[49]  Ralph D Freeman Cortical columns: a multi-parameter examination. , 2003, Cerebral cortex.

[50]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[51]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Refractor Vision , 2000, The Lancet.

[53]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[55]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[56]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Dennis Gabor,et al.  Theory of communication , 1946 .

[58]  Steven W. Zucker,et al.  Two Stages of Curve Detection Suggest Two Styles of Visual Computation , 1989, Neural Computation.

[59]  M. Tovee Comprar An Introduction To The Visual System | M. Tovee | 9780521709644 | Cambridge University Press , 2008 .

[60]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[61]  Zhaoping Li,et al.  Understanding Retinal Color Coding from First Principles , 1992, Neural Computation.

[62]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[63]  Kevan A. C. Martin,et al.  From enzymes to visual perception: a bridge too far? , 1988, Trends in Neurosciences.

[64]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[65]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[66]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[67]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[68]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[69]  A. M. Sillito,et al.  Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus , 1993, Experimental Brain Research.

[70]  E. Callaway Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.

[71]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[72]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[73]  J. Alonso,et al.  Complex Receptive Fields in Primary Visual Cortex , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[74]  Mriganka Sur,et al.  Response Plasticity in Primary Visual Cortex and its Role in Vision and Visuomotor Behavior: Bottom-up and Top-down Influences , 2003 .

[75]  Bruno A. Olshausen,et al.  Principles of Image Representation in Visual Cortex , 2003 .

[76]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[77]  Zhaoping Li,et al.  Efficient stereo coding in the multiscale representation , 1994 .

[78]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[79]  Jeffrey Ng,et al.  A steerable complex wavelet construction and its application to image denoising , 2005, IEEE Transactions on Image Processing.

[80]  S. Zeki A vision of the brain , 1993 .

[81]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[82]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[83]  E Kaplan,et al.  The dynamics of primate retinal ganglion cells. , 2001, Progress in brain research.

[84]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[85]  S. Nelson,et al.  Temporal interactions in the cat visual system. I. Orientation- selective suppression in the visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  D. Ringach,et al.  Dynamics of Spatial Frequency Tuning in Macaque V1 , 2002, The Journal of Neuroscience.

[87]  Ethan A. Benardete,et al.  Chapter 2 The dynamics of primate retinal ganglion cells , 2001 .

[88]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  Z Li,et al.  Contextual influences in V1 as a basis for pop out and asymmetry in visual search. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Chang Dong Yoo,et al.  Image watermarking based on invariant regions of scale-space representation , 2006, IEEE Transactions on Signal Processing.

[91]  Michael P. Stryker,et al.  Origin of orientation tuning in the visual cortex , 1992, Current Opinion in Neurobiology.

[92]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[93]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[94]  G. Henry,et al.  The nature and origin of orientation specificity in neurons of the visual pathways , 1994, Progress in Neurobiology.

[95]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[96]  F. Sengpiel,et al.  The Role of Activity in Development of the Visual System , 2002, Current Biology.

[97]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[98]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[99]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[100]  J. Alonso,et al.  Construction of Complex Receptive Fields in Cat Primary Visual Cortex , 2001, Neuron.

[101]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[103]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[104]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[105]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[106]  D. Pollen,et al.  Relationship between spatial frequency selectivity and receptive field profile of simple cells. , 1979, The Journal of physiology.

[107]  Z Li,et al.  Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. , 1999, Network.

[108]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[109]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[110]  Nick G. Kingsbury,et al.  Rotation-invariant local feature matching with complex wavelets , 2006, 2006 14th European Signal Processing Conference.

[111]  L. Zhaoping,et al.  A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of colour–orientation interference in texture segmentation , 2006 .

[112]  J. Movshon,et al.  Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. , 1990, Journal of neurophysiology.

[113]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[114]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[115]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[116]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[117]  B. Wandell Foundations of vision , 1995 .

[118]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[120]  Zhaoping Li,et al.  A Theory of the Visual Motion Coding in the Primary Visual Cortex , 1996, Neural Computation.

[121]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[122]  A. J. Parker,et al.  Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys , 1984, Experimental Brain Research.

[123]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[124]  Anil A. Bharath,et al.  Retinal Blood Vessel Segmentation by Means of Scale-Space Analysis and Region Growing , 1999, MICCAI.

[125]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[126]  Ivan W. Selesnick,et al.  The double-density dual-tree DWT , 2004, IEEE Transactions on Signal Processing.

[127]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[128]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[129]  S. Engel,et al.  Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. , 2002, Journal of vision.

[130]  Z Li,et al.  Pre-attentive segmentation in the primary visual cortex. , 1998, Spatial vision.

[131]  Nick G. Kingsbury,et al.  Multiscale Keypoint Detection using the Dual-Tree Complex Wavelet Transform , 2006, 2006 International Conference on Image Processing.

[132]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[133]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[134]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[135]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.