Spatial Transformations in the Parietal Cortex Using Basis Functions

Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.

[1]  G. Westheimer Kinematics of the eye. , 1957, Journal of the Optical Society of America.

[2]  J. Mayhew After-effects of movement contingent on direction of gaze. , 1973, Vision Research.

[3]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[4]  E. Làdavas,et al.  Is the hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? , 1987, Brain : a journal of neurology.

[5]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[6]  D. Levine,et al.  Left visual spatial neglect is both environment‐centered and body‐centered , 1987, Neurology.

[7]  E I Knudsen,et al.  Computational maps in the brain. , 1987, Annual review of neuroscience.

[8]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[9]  R. Andersen,et al.  The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. , 1988, Canadian journal of physiology and pharmacology.

[10]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[11]  J. Keener Principles of Applied Mathematics , 2019 .

[12]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[13]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[14]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  J. T. Massey,et al.  Mental rotation of the neuronal population vector. , 1989, Science.

[16]  R. Lal,et al.  Gating of retinal transmission by afferent eye position and movement signals. , 1989, Science.

[17]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[18]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[19]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[20]  Pierre Baldi,et al.  Computing with Arrays of Bell-Shaped and Sigmoid Functions , 1990, NIPS.

[21]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[22]  Richard A. Andersen,et al.  Algorithm programmed by a neural network model for coordinate transformation , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[23]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[24]  Terence D. Sanger,et al.  Basis-Function Trees as a Generalization of Local Variable Selection Methods , 1990, NIPS.

[25]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[26]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[27]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[29]  David L. Sparks,et al.  Sensori-motor integration in the primate superior colliculus , 1991 .

[30]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[31]  J. Schall,et al.  Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. , 1991, Journal of neurophysiology.

[32]  J. Driver,et al.  Can Visual Neglect Operate in Object-centred Co-ordinates? An Affirmative Single-case Study , 1991 .

[33]  A Berthoz,et al.  A neural network model of sensoritopic maps with predictive short-term memory properties. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[35]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[36]  S Thorpe,et al.  Modulation of neural stereoscopic processing in primate area V1 by the viewing distance. , 1992, Science.

[37]  J F Soechting,et al.  Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. , 1992, Annual review of neuroscience.

[38]  J. Stein The representation of egocentric space in the posterior parietal cortex. , 1992, The Behavioral and brain sciences.

[39]  Paul B. Johnson,et al.  Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[41]  David S. Touretzky,et al.  Neural Representation of Space Using Sinusoidal Arrays , 1993, Neural Computation.

[42]  Terrence J. Sejnowski,et al.  Egocentric Spatial Representation in Early Vision , 1993 .

[43]  Thomas L. Griffiths,et al.  Advances in Neural Information Processing Systems 21 , 1993, NIPS 2009.

[44]  T. Sejnowski,et al.  Egocentric Spaw Representation in Early Vision , 1993, Journal of Cognitive Neuroscience.

[45]  J. Malpeli,et al.  Responses of neurons in primary visual cortex are modulated by eye position. , 1993, Journal of neurophysiology.

[46]  Michael I. Jordan,et al.  Computational Structure of coordinate transformations: A generalization study , 1994, NIPS.

[47]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[48]  Morris Moscovitch,et al.  Coding of Spatial Information in the Somatosensory System: Evidence from Patients with Neglect following Parietal Lobe Damage , 1994, Journal of Cognitive Neuroscience.

[49]  Morris Moscovitch,et al.  Object-Centered Neglect in Patients with Unilateral Neglect: Effects of Left-Right Coordinates of Objects , 1994, Journal of Cognitive Neuroscience.

[50]  Terence D. Sanger,et al.  Theoretical Considerations for the Analysis of Population Coding in Motor Cortex , 1994, Neural Computation.

[51]  Terrence J. Sejnowski,et al.  Spatial Representations in the Parietal Cortex May Use Basis Functions , 1994, NIPS.

[52]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[53]  R. Andersen Encoding of intention and spatial location in the posterior parietal cortex. , 1995, Cerebral cortex.

[54]  Terrence J. Sejnowski,et al.  A Model of Spatial Representations in Parietal Cortex Explains Hemineglect , 1995, NIPS.

[55]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  N. Logothetis,et al.  Psychophysical and physiological evidence for viewer-centered object representations in the primate. , 1995, Cerebral cortex.

[57]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[58]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[59]  J M Groh,et al.  Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus. , 1996, Journal of neurophysiology.

[60]  E. Bullmore,et al.  Society for Neuroscience Abstracts , 1997 .

[61]  Bremmer,et al.  Eye position encoding in the macaque posterior parietal cortex , 1998, The European journal of neuroscience.

[62]  C. Gross,et al.  Spatial maps for the control of movement , 1998, Current Opinion in Neurobiology.

[63]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[64]  Richard A. Andersen,et al.  Gaze coding in the posterior parietal cortex , 1998 .