Selectivity and sparseness in the responses of striate complex cells

[1]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[2]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[3]  R. Baddeley,et al.  Searching for filters with 'interesting' output distributions: an uninteresting direction to explore? , 1996, Network.

[4]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  Edmund T. Rolls,et al.  What determines the capacity of autoassociative memories in the brain? Network , 1991 .

[6]  E. B. Baum,et al.  Internal representations for associative memory , 1988, Biological Cybernetics.

[7]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  J. Kulikowski,et al.  Space and spatial frequency: analysis and representation in the macaque striate cortex , 2004, Experimental Brain Research.

[9]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[10]  Steven Reece,et al.  An information theoretic approach to the contributions of the firing rates and the correlations between the firing of neurons. , 2003, Journal of neurophysiology.

[11]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[12]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[13]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[14]  Stefano Panzeri,et al.  Firing Rate Distributions and Efficiency of Information Transmission of Inferior Temporal Cortex Neurons to Natural Visual Stimuli , 1999, Neural Computation.

[15]  R. Desimone,et al.  Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[17]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[18]  J. Austin Associative memory , 1987 .

[19]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[20]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[21]  Vision Research , 1961, Nature.

[22]  Terrence J. Sejnowski,et al.  Seeing White: Qualia in the Context of Decoding Population Codes , 1999, Neural Computation.

[23]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[24]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[25]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[26]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[27]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[28]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[29]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[30]  Peter Földiák,et al.  Sparse coding in the primate cortex , 1998 .

[31]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. , 1998, Neuroreport.

[33]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[34]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[35]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[36]  M. Bryson Heavy-Tailed Distributions , 2006 .

[37]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[38]  Terry Winograd,et al.  Understanding computers and cognition - a new foundation for design , 1987 .

[39]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[40]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[41]  David J. Field,et al.  Wavelets, vision and the statistics of natural scenes , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[44]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[45]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[46]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[47]  Michael J. Korenberg,et al.  Identification of complex-cell intensive nonlinearities in a cascade model of cat visual cortex , 1992, Biological Cybernetics.

[48]  G. Lakoff Women, fire, and dangerous things : what categories reveal about the mind , 1988, Dialogue.

[49]  Roland Baddeley,et al.  An efficient code in V1? , 1996, Nature.

[50]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[51]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[52]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[53]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[54]  H. Spitzer,et al.  Complex-cell receptive field models , 1988, Progress in Neurobiology.

[55]  M. Lewicki,et al.  Learning higher-order structures in natural images , 2003, Network.

[56]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[57]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[58]  M. Lewicki,et al.  Learning higher-order structures in natural images. , 2003 .

[59]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.