Towards a more general many-objective evolutionary optimizer using multi-indicator density estimation

Recently, it was shown that Many-Objective Evolutionary Algorithms (MaOEAs) that employ a set of convex weight vectors are overspecialized in solving certain benchmark problems. This over-specialization is due to a high correlation between the Pareto fronts of the test problems and the simplex formed by the weight vectors. In furtherance of avoiding this issue, we propose a novel steady-state MaOEA that does not require weight vectors and adaptively chooses between two density estimators: one based on the IGD+ indicador that strengthens convergence to the Pareto front and another one, based on the s-energy indicator, which improves the diversity of the solutions. This approach, called sIGD+-MOEA, is compared with respect to NSGA-III, MOEA/D, IGD+-EMOA and MOMBI2 (which are MaOEAs that employ convex weight vectors) on the test suites WFG and WFG-1, using the hypervolume indicator. Experimental results show that sIGD+-MOEA is a promising alternative that can solve many-objective optimization problems whose Pareto fronts present different geometries.

[1]  Carlos A. Coello Coello,et al.  IGD+-EMOA: A multi-objective evolutionary algorithm based on IGD+ , 2016, CEC.

[2]  Gary B. Lamont,et al.  Evolutionary algorithms for solving multi-objective problems, Second Edition , 2007, Genetic and evolutionary computation series.

[3]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[4]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[5]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[6]  Carlos A. Coello Coello,et al.  Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization , 2015, GECCO.

[7]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[8]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[9]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[10]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[11]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[12]  Hisao Ishibuchi,et al.  Modified Distance Calculation in Generational Distance and Inverted Generational Distance , 2015, EMO.