Learning Nonlinear Overcomplete Representations for Efficient Coding

We derive a learning algorithm for inferring an overcomplete basis by viewing it as probabilistic model of the observed data. Overcomplete bases allow for better approximation of the underlying statistical density. Using a Laplacian prior on the basis coefficients removes redundancy and leads to representations that are sparse and are a nonlinear function of the data. This can be viewed as a generalization of the technique of independent component analysis and provides a method for blind source separation of fewer mixtures than sources. We demonstrate the utility of overcomplete representations on natural speech and show that compared to the traditional Fourier basis the inferred representations potentially have much greater coding efficiency.