An Algorithm Designer's Workbench for Platform FPGA's

Growing gate density, availability of embedded multipliers and memory, and integration of traditional processors are some of the key advantages of Platform FPGAs. Such FPGAs are attractive for implementing compute intensive signal processing kernels used in wired as well as wireless mobile devices. However, algorithm design using Platform FPGAs, with energy dissipation as an additional performance metric for mobile devices, poses significant challenges. In this paper, we propose an algorithm designer’s workbench that addresses the above issues. The workbench supports formal modeling of the signal processing kernels, evaluation of latency, energy, and area of a design, and performance tradeoff analysis to facilitate optimization. The workbench includes a high-level estimator for rapid performance estimation and widely used low-level simulators for detailed simulation. Features include a confidence interval based technique for accurate power estimation and facility to store algorithm designs as library of models for reuse. We demonstrate the use of the workbench through design of matrix multiplication algorithm for Xilinx Virtex-II Pro.