Planck 2015 results. II. Low Frequency Instrument data processings

Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the $\Lambda$CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, $Q$ and $U$, or the $E$-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., $\ell \lesssim 400$). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the $\Lambda$CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales.

C. A. Oxborrow | R. B. Barreiro | J. Cardoso | J. Tuovinen | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | J. Lesgourgues | A. Melchiorri | V. Pettorino | P. McGehee | J. Rubino-Mart'in | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | A. Challinor | A. Lasenby | B. Wandelt | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | A. Moss | S. Mitra | T. Souradeep | A. Benoit-Lévy | R. Rebolo | A. Coulais | A. Gregorio | Y. Fantaye | P. Christensen | M. Ashdown | C. Lawrence | B. Rusholme | E. Pierpaoli | R. Davis | T. Kisner | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | F. Boulanger | H. Nørgaard-Nielsen | R. Davies | J. Leahy | T. Pearson | P. Ade | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | M. Bucher | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | H. Chiang | S. Church | D. Clements | L. Colombo | M. Cruz | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Hanson | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | J. Knoche | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | D. Maino | N. Mandolesi | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | P. Mazzotta | P. Meinhold | L. Mendes | A. Mennella | M. Migliaccio | K. Mikkelsen | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | D. Novikov | I. Novikov | F. Paci | L. Pagano | F. Pajot | D. Paoletti | G. Patanchon | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | L. Popa | G. Pratt | G. Prezeau | J. Puget | J. Rachen | M. Remazeilles | C. Renault | A. Renzi | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Sandri | D. Santos | G. Savini | D. Scott | M. Seiffert | E. Shellard | L. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | D. Tavagnacco | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | I. Wehus | A. Wilkinson | D. Yvon | A. Zonca | E. Calabrese | F. Elsner | S. Galli | E. Gjerløw | J. Gudmundsson | M. Lattanzi | J. Murphy | M. Savelainen | V. Stolyarov | N. Bartolo | C. Combet | A. Ducout | J. Fergusson | A. Frejsel | C. Gauthier | T. Ghosh | Z. Huang | G. Hurier | F. Levrier | G. Maggio | A. Mangilli | M. Rossetti | T. Trombetti | C. Franceschet | E. Keihänen | K. Kiiveri | A. Lähteenmäki | V. Lindholm | S. Masi | T. Vassallo | N. Mandolesi | P. Battaglia | D. Marinucci | G. Rocha | Y. Akrami | N. Morisset | M. Peel | N. Oppermann | S. Matarrese | M. Ballardini | S. Basak | B. Casaponsa | G. Castex | D. Contreras | R. Fernández-Cobos | A. Frolov | J. Kim | N. Krachmalnicoff | H. Liu | D. Molinari | E. Romelli | A. Rotti | J. Zibin | M. Türler | P. K. Aluri | N. Pant | P. Christensen | J. Puget | R. Rebolo | F. Lévrier | J. Bock | D. Scott | J. Bock | S. Hildebrandt | P. Martin | E. Martinez-Gonzalez | M. Tristram | P. Bernardis | A. D. Rosa | J. González-Nuevo | O. Doré | M. López-Caniego | K. Górski | A. Benoit-Lévy | J. Fergusson | L. Toffolatti | P. Ade | J. Bernard | J. Cardoso | S. Gratton | G. Lagache | D. Novikov | I. Novikov | F. Perrotta | Clive Dickinson | J. Rubiño-Martín | A. Benoit | M. Bucher | L. Colombo | A. Curto | J. M. Diego | J. Macı́as-Pérez | G. Maggio | M. Migliaccio | G. Prézeau | F. Villa | R. Watson | A. Zonca | R. Butler | B. Partridge | R. Davis | M. Kunz | J. A. Murphy | M. Reinecke | J. Bond | D. Harrison | C. Lawrence | Y. Giraud-H'eraud | S. Henrot-Versill'e | L. Terenzi | M. Hobson | R. Davies | T. R. Jaffe | D. Scott | O. Forni | C. Rosset | A.-S. Suur-Uski | S. Mitra | A. Bonaldi

[1]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[2]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[3]  P. Lilje,et al.  Asymmetries in the CMB anisotropy field , 2003, astro-ph/0307507.

[4]  R. B. Barreiro,et al.  Anomalous variance in the WMAP data and Galactic foreground residuals , 2010, 1005.1264.

[5]  F. Finelli,et al.  Low variance at large scales of WMAP 9 year data , 2013, 1304.5493.

[6]  C. G. T. Haslam,et al.  A 408 MHz all-sky continuum survey. II. The atlas of contour maps. , 1982 .

[7]  R. B. Barreiro,et al.  A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data , 2008 .

[8]  G. W. Pratt,et al.  Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.

[9]  Kendrick Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2005, astro-ph/0511629.

[10]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[11]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[12]  Second-order gravitational effects of local inhomogeneities on cmb anisotropies and non-gaussian signatures , 2005 .

[13]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. HFI˙Transfer˙Function˙and˙Beams c ○ ESO 2013 , 2013 .

[14]  P. Vielva,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2004 .

[15]  P. Vielva,et al.  A comprehensive overview of the Cold Spot , 2010, 1008.3051.

[16]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.

[17]  M. Hobson,et al.  The CMB cold spot: texture, cluster or void? , 2008, 0804.2904.

[18]  J. R. Bond,et al.  Application of XFASTER power spectrum and likelihood estimator to Planck , 2009, 0912.4059.

[19]  K. Gorski,et al.  Evidence of Vorticity and Shear at Large Angular Scales in the WMAP Data: A Violation of Cosmological Isotropy? , 2005, astro-ph/0503213.

[20]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[21]  E. Gaztañaga,et al.  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[22]  S. Colombi,et al.  Non-Gaussianity and Minkowski functionals: forecasts for Planck , 2012, 1209.1223.

[23]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[24]  A. Rosa,et al.  New constraints on parity symmetry from a re-analysis of the WMAP-7 low-resolution power spectra , 2010, 1006.1979.

[25]  G. Smoot,et al.  Can the Lack of Symmetry in the COBE DMR Maps Constrain the Topology of the Universe , 1995, astro-ph/9510109.

[26]  B. Wandelt,et al.  The Hot and Cold Spots in the WMAP Data are Not Hot and Cold Enough , 2004, astro-ph/0404037.

[27]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[28]  C. A. Oxborrow,et al.  Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics , 2013, 1303.5081.

[29]  C. Pichon,et al.  Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton , 2011, 1110.0261.

[30]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[31]  J. C. B. Sánchez The inflationary origin of the Cold Spot anomaly , 2014, 1405.4913.

[32]  T. Souradeep,et al.  Measuring the Statistical Isotropy of the Cosmic Microwave Background Anisotropy , 2003 .

[33]  M. Cruz,et al.  The non‐Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution , 2006, astro-ph/0601427.

[34]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[35]  J. Fadili,et al.  CMB data analysis and sparsity , 2008, 0804.1295.

[36]  K. Gorski,et al.  Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps , 1996, astro-ph/9601061.

[37]  C. A. Oxborrow,et al.  Planck2013 results. XXVIII. ThePlanckCatalogue of Compact Sources , 2013, Astronomy & Astrophysics.

[38]  Amir Hajian,et al.  Measuring Statistical isotropy of the CMB anisotropy , 2003 .

[39]  A. Banday,et al.  DIRECTIONAL DEPENDENCE OF ΛCDM COSMOLOGICAL PARAMETERS , 2013, 1303.5371.

[40]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[41]  A. Starobinsky New Restrictions on Spatial Topology of the Universe from Microwave Background Temperature Fluctuations , 1993, gr-qc/9305019.

[42]  R. B. Barreiro,et al.  On the optimality of the spherical Mexican hat wavelet estimator for the primordial non-Gaussianity , 2010, 1007.2181.

[43]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[44]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[45]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[46]  K. Land,et al.  Examination of evidence for a preferred axis in the cosmic radiation anisotropy. , 2005, Physical review letters.

[47]  Constraints on the non-linear coupling parameter fnl with the Archeops data , 2008, 0804.0136.

[48]  C. Pichon,et al.  Invariant joint distribution of a stationary random field and its derivatives: Euler characteristic and critical point counts in 2 and 3D , 2009, 0907.1437.

[49]  D. Huterer,et al.  No large-angle correlations on the non-Galactic microwave sky , 2008, 0808.3767.

[50]  C. A. Oxborrow,et al.  Planck 2013 results. XIV. Zodiacal emission , 2013, 1303.5074.

[51]  Changbom Park,et al.  Genus topology of the cosmic microwave background from the WMAP 3-year data , 2006, astro-ph/0610764.

[52]  H. Peiris,et al.  Avoiding bias in reconstructing the largest observable scales from partial-sky data , 2011, 1107.5466.

[53]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[54]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[55]  M. Cruz,et al.  Using CMB polarization to constrain the anomalous nature of the Cold Spot with an incomplete-sky coverage , 2013, 1305.5527.

[56]  The shape of CMB temperature and polarization peaks on the sphere , 2015, 1512.07412.

[57]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[58]  Test of cosmic isotropy in the Planck era , 2014, 1409.1114.

[59]  Shuang-Nan Zhang,et al.  Non-Gaussianity Due to Possible Residual Foreground Signals in Wilkinson Microwave Anistropy Probe First-Year Data Using Spherical Wavelet Approaches , 2005, astro-ph/0504589.

[60]  D. Huterer,et al.  Disks in the sky: A reassessment of the WMAP “cold spot” , 2009, 0908.3988.

[61]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.

[62]  Max Tegmark,et al.  CMB multipole measurements in the presence of foregrounds , 2006, Physical Review D.

[63]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[64]  T. Souradeep,et al.  Testing global isotropy of three-year Wilkinson Microwave Anisotropy Probe (WMAP) data : Temperature analysis , 2006, astro-ph/0607153.

[65]  D. Scott Against the Delta-ln(1 + z) of about 0.205 periodicity in quasar redshifts , 1991 .

[66]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[67]  A. Lewis,et al.  Estimators for CMB statistical anisotropy , 2009, 0908.0963.

[68]  D. Huterer,et al.  Large-angle cosmic microwave background suppression and polarization predictions , 2013 .

[69]  S. Plaszczynski,et al.  A novel estimator of the polarization amplitude from normally distributed Stokes parameters , 2013, 1312.0437.

[70]  Benjamin D. Wandelt,et al.  A Statistically Robust 3-Sigma Detection of Non-Gaussianity in the WMAP Data Using Hot and Cold Spots , 2005 .

[71]  R. B. Barreiro,et al.  Testing Gaussianity on Archeops data , 2006, astro-ph/0612148.

[72]  R. B. Barreiro,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2003, astro-ph/0310273.

[73]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[74]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[75]  Andrew H. Jaffe,et al.  MasQU: Finite Differences on Masked Irregular Stokes Q,U Grids , 2011 .

[76]  P. Ferreira,et al.  The closet non-Gaussianity of anisotropic Gaussian fluctuations , 1997, astro-ph/9704052.

[77]  G. W. Pratt,et al.  Planck 2013 results. IX. HFI spectral response , 2013, 1303.5070.

[78]  H. Peiris,et al.  The cut-sky cosmic microwave background is not anomalous , 2010, 1004.2706.

[79]  M. Hobson,et al.  A Cosmic Microwave Background Feature Consistent with a Cosmic Texture , 2007, Science.

[80]  S. Rasanen,et al.  Can a supervoid explain the cold spot , 2014, 1408.4720.

[81]  T. Louis,et al.  Filling in CMB map missing data using constrained Gaussian realizations , 2011, 1109.0286.

[82]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[83]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[84]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[85]  Torsten A. Ensslin,et al.  The axis of evil – a polarization perspective , 2009, 0908.0453.

[86]  R. B. Barreiro,et al.  Low Frequency Instrument data processing , 2014 .

[87]  P. Naselsky,et al.  ANOMALOUS PARITY ASYMMETRY OF THE WILKINSON MICROWAVE ANISOTROPY PROBE POWER SPECTRUM DATA AT LOW MULTIPOLES , 2010, 1001.4613.

[88]  F. V. Leeuwen,et al.  Peculiar velocity effects in high-resolution microwave background experiments , 2001, astro-ph/0112457.

[89]  A. Banday,et al.  POWER ASYMMETRY IN WMAP AND PLANCK TEMPERATURE SKY MAPS AS MEASURED BY A LOCAL VARIANCE ESTIMATOR , 2014, 1402.0870.

[90]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[91]  P. Vandergheynst,et al.  Alignment and signed-intensity anomalies in WMAP data , 2007, 0704.3736.

[92]  P. Lilje,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004, astro-ph/0401276.

[93]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[94]  A. Moss,et al.  Tilted physics: A cosmologically dipole-modulated sky , 2010, 1011.2990.

[95]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[96]  P. Vielva,et al.  Detection of a non‐Gaussian spot in WMAP , 2004 .

[97]  V. Desjacques Baryon acoustic signature in the clustering of density maxima , 2008, 0806.0007.

[98]  T. Buchert,et al.  Robust Morphological Measures for Large-Scale Structure in the Universe , 1993 .

[99]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[100]  V. Gurzadyan,et al.  To the center of cold spot with Planck , 2014, 1404.6347.

[101]  F. Argueso,et al.  The performance of spherical wavelets to detect non‐Gaussianity in the cosmic microwave background sky , 2002 .

[102]  J. Fadili,et al.  Low-ℓ CMB analysis and inpainting , 2012, 1210.6587.

[103]  J. Zibin Comment on "A Supervoid Imprinting the Cold Spot in the Cosmic Microwave Background" , 2014, 1408.4442.

[104]  S. Adhikari Local variance asymmetries in Planck temperature anisotropy maps , 2014, 1408.5396.

[105]  E. Kovetz,et al.  A close examination of cosmic microwave background mirror-parity after Planck , 2014, 1403.2104.

[106]  J. D. McEwen,et al.  A high-significance detection of non-Gaussianity in the Wilkinson Microwave Anisotropy Probe 1-yr data using directional spherical wavelets , 2004, astro-ph/0406604.

[107]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[108]  A. Lewis,et al.  Asymmetric Beams and CMB Statistical Anisotropy , 2010, 1003.0198.

[109]  G. Efstathiou A Maximum Likelihood Analysis of the Low CMB Multipoles from WMAP , 2003 .

[110]  G. W. Pratt,et al.  Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation , 2013, 1303.5071.

[111]  M. Quartin,et al.  On the proper kinetic quadrupole CMB removal and the quadrupole anomalies , 2015, 1504.02076.

[112]  B. Czech,et al.  Polarizing Bubble Collisions , 2010, 1006.0832.

[113]  T. Matsubara Analytic Minkowski Functionals of the Cosmic Microwave Background: Second-order Non-Gaussianity with Bispectrum and Trispectrum , 2010, 1001.2321.

[114]  M. Kamionkowski,et al.  Aspects of the cosmic microwave background dipole , 2002, astro-ph/0210165.

[115]  Shea Brown,et al.  Extragalactic Radio Sources and the WMAP Cold Spot , 2007, 0704.0908.

[116]  J. Silk,et al.  Detection of a supervoid aligned with the cold spot of the cosmic microwave background , 2014, 1405.1566.

[117]  T. Buchert,et al.  Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.

[118]  H. K. Eriksen,et al.  FAST PIXEL SPACE CONVOLUTION FOR COSMIC MICROWAVE BACKGROUND SURVEYS WITH ASYMMETRIC BEAMS AND COMPLEX SCAN STRATEGIES: FEBeCoP , 2010, 1005.1929.

[119]  Applications of the Gaussian kinematic formula to CMB data analysis , 2015 .

[120]  J. D. McEwen,et al.  Optimal filters for detecting cosmic bubble collisions , 2012, 1202.2861.

[121]  J. García-Bellido,et al.  Supervoids in the WISE–2MASS catalogue imprinting cold spots in the cosmic microwave background , 2014, 1405.1555.

[122]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[123]  K. Land,et al.  Is the universe odd , 2005, astro-ph/0507289.

[124]  K. Tomita,et al.  Second order gravitational effects on CMB temperature anisotropy in {lambda} dominated flat universes , 2007, 0712.1291.

[125]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[126]  C. Gordon Broken Isotropy from a Linear Modulation of the Primordial Perturbations , 2006, astro-ph/0607423.

[127]  P. Lilje,et al.  The N-Point Correlation Functions of the First-Year Wilkinson Microwave Anisotropy Probe Sky Maps , 2004, astro-ph/0407271.

[128]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[129]  H. Peiris,et al.  First observational tests of eternal inflation. , 2010, Physical review letters.

[130]  G. Efstathiou,et al.  A maximum likelihood analysis of the low cosmic microwave background multipoles from the Wilkinson Microwave Anisotropy Probe , 2004 .

[131]  Non-Gaussian curvature spikes from chaotic billiards in inflation preheating. , 2009, Physical review letters.

[132]  D. Huterer,et al.  Uncorrelated universe: Statistical anisotropy and the vanishing angular correlation function in WMAP years 1 3 , 2006, astro-ph/0605135.

[133]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[134]  M. P. Hobson,et al.  Cosmological Applications of a Wavelet Analysis on the Sphere , 2007, 0704.3158.

[135]  Instituto de Fisica de Cantabria,et al.  The Jubilee ISW project – I. Simulated ISW and weak lensing maps and initial power spectra results , 2013, 1307.1712.

[136]  M. L'opez-Caniego The Planck Catalogue of Compact Sources , 2014, 1401.4683.

[137]  Anthony Challinor,et al.  Analysis of CMB polarization on an incomplete sky , 2001 .

[138]  F. Hansen,et al.  Limits on primordial non-Gaussianity from Minkowski Functionals of theWMAPtemperature anisotropies , 2008, Monthly Notices of the Royal Astronomical Society.

[139]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.

[140]  R. B. Barreiro,et al.  A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data , 2007, 0706.4289.

[141]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[142]  W. White,et al.  A CMB polarization primer , 1997 .

[143]  Random-walk statistics and the spherical harmonic representation of cosmic microwave background maps , 2004, astro-ph/0410633.

[144]  C. Burigana,et al.  A comparison of CMB angular power spectrum estimators at large scales: the TT case , 2014, 1403.1089.

[145]  P. Naselsky,et al.  Anomalous parity asymmetry of WMAP 7-year power spectrum data at low multipoles: Is it cosmological or systematics? , 2010, 1002.0148.

[146]  J. Silk,et al.  Local Voids as the Origin of Large-Angle Cosmic Microwave Background Anomalies. I. , 2006, astro-ph/0602478.

[147]  T. Souradeep,et al.  Novel approach to reconstructing signals of isotropy violation from a masked CMB sky , 2015, 1506.00550.

[148]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[149]  M. Quartin,et al.  On the significance of power asymmetries in Planck CMB data at all scales , 2014, 1408.5792.

[150]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[151]  E. Bunn Efficient Decomposition of Cosmic Microwave Background Polarization Maps into Pure E, Pure B, and Ambiguous Components. , 2010, 1008.0827.

[152]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. planck˙isw c ○ ESO 2013 , 2013 .

[153]  G. W. Pratt,et al.  Planck 2013 results - XXVI. Background geometry and topology of the Universe , 2013, 1303.5086.

[154]  Matias Zaldarriaga,et al.  E/B decomposition of finite pixelized CMB maps , 2003 .

[155]  Grid-based exploration of cosmological parameter space with Snake , 2012, 1211.3126.

[156]  R. B. Barreiro,et al.  CMB polarization as a probe of the anomalous nature of the Cold Spot , 2010, 1002.4029.

[157]  K. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1997, astro-ph/9710185.

[158]  A. Starobinsky,et al.  Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps , 2011, 1111.5362.

[159]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[160]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[161]  Eiichiro Komatsu,et al.  Limits on anisotropic inflation from the Planck data , 2013, 1310.1605.

[162]  A. Hajian Analysis of the apparent lack of power in the cosmic microwave background anisotropy at large angular scales , 2007, astro-ph/0702723.

[163]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[164]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[165]  P. Lilje,et al.  INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA , 2009, 0903.1229.

[166]  Polarization and anisotropy of the microwave sky. , 1994, Physical review letters.

[167]  P. Lilje,et al.  THE TWO- AND THREE-POINT CORRELATION FUNCTIONS OF THE POLARIZED FIVE-YEAR WMAP SKY MAPS , 2009, 0910.5860.

[168]  Imprints of a Primordial Preferred Direction on the Microwave Background , 2007, astro-ph/0701357.

[169]  P. Lilje,et al.  POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC? , 2008, 0812.3795.

[170]  A. Banday,et al.  The hot and cold spots in five–year WMAP data , 2009, 0903.4446.

[171]  Shaun Cole,et al.  Full‐sky map of the ISW and Rees–Sciama effect from Gpc simulations , 2010, 1003.0974.

[172]  Glenn D. Starkman,et al.  Lack of large-angle TT correlations persists in WMAP and Planck , 2013, 1310.3831.

[173]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[174]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[175]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[176]  G. W. Pratt,et al.  Planck 2015 results. XVII. Constraints on primordial non-Gaussianity , 2015, 1502.01592.

[177]  E. Bunn,et al.  A preferred‐direction statistic for sky maps , 1999, astro-ph/9906044.

[178]  Mikko Karttunen,et al.  Stencils with isotropic discretization error for differential operators , 2006 .

[179]  L. Cayón,et al.  Higher Criticism statistic: detecting and identifying non-Gaussianity in the WMAP first-year data , 2005, astro-ph/0507246.

[180]  K. Gorski,et al.  Low‐order multipole maps of cosmic microwave background anisotropy derived from WMAP , 2004, astro-ph/0405007.