Geometrical Recombination Operators for Real-Coded Evolutionary MCMCs

Markov chain Monte Carlo (MCMC) algorithms are sampling methods for intractable distributions. In this paper, we propose and investigate algorithms that improve the sampling process from multi-dimensional real-coded spaces. We present MCMC algorithms that run a population of samples and apply recombination operators in order to exchange useful information and preserve commonalities in highly probable individual states. We call this class of algorithms Evolutionary MCMCs (EMCMCs). We introduce and analyze various recombination operators which generate new samples by use of linear transformations, for instance, by translation or rotation. These recombination methods discover specific structures in the search space and adapt the population samples to the proposal distribution. We investigate how to integrate recombination in the MCMC framework to sample from a desired distribution. The recombination operators generate individuals with a computational effort that scales linearly in the number of dimensions and the number of parents. We present results from experiments conducted on a mixture of multivariate normal distributions. These results show that the recombinative EMCMCs outperform the standard MCMCs for target distributions that have a nontrivial structural relationship between the dimensions.

[1]  C. Braak,et al.  Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy , 2004 .

[2]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[3]  D. Wolpert,et al.  Adaptive Metropolis Sampling and Optimization with Product Distributions , 2005 .

[4]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[5]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[6]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[9]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[10]  C.J.F. ter Braak,et al.  Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy (revised) , 2004 .

[11]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[12]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[13]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[14]  Dirk Thierens,et al.  Recombinative EMCMC algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[16]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[17]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[18]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[21]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[22]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  Dirk Thierens,et al.  Evolutionary Markov Chain Monte Carlo , 2003, Artificial Evolution.

[25]  Malcolm J. A. Strens,et al.  Markov Chain Monte Carlo Sampling using Direct Search Optimization , 2002, ICML.

[26]  Herman K. van Dijk,et al.  Adaptive Polar Sampling , 2002 .