Spider Monkey Optimization algorithm for numerical optimization

Swarm intelligence is one of the most promising area for the researchers in the field of numerical optimization. Researchers have developed many algorithms by simulating the swarming behavior of various creatures like ants, honey bees, fish, birds and the findings are very motivating. In this paper, a new approach for numerical optimization is proposed by modeling the foraging behavior of spider monkeys. Spider monkeys have been categorized as fission–fusion social structure based animals. The animals which follow fission–fusion social systems, split themselves from large to smaller groups and vice-versa based on the scarcity or availability of food. The proposed swarm intelligence approach is named as Spider Monkey Optimization (SMO) algorithm and can broadly be classified as an algorithm inspired by intelligent foraging behavior of fission–fusion social structure based animals.

[1]  Jürgen Schmidhuber,et al.  Self-organizing nets for optimization , 2004, IEEE Transactions on Neural Networks.

[2]  Kevin M. Passino,et al.  Bacterial Foraging Optimization , 2010, Int. J. Swarm Intell. Res..

[3]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[4]  Lynn A. Fairbanks,et al.  Juvenile primates : life history, development, and behavior , 1993 .

[5]  Caste and ecology in the social insects , 1979 .

[6]  X. Z. Gao,et al.  A simulated annealing-based immune optimization method , 2008 .

[7]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[8]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[9]  M. Symington,et al.  Fission-fusion social organization inAteles andPan , 1990, International Journal of Primatology.

[10]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[11]  Katja Hofmann,et al.  Balancing Exploration and Exploitation in Learning to Rank Online , 2011, ECIR.

[12]  D. Williamson,et al.  The box plot: a simple visual method to interpret data. , 1989, Annals of internal medicine.

[13]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[14]  Gabriel Ramos-Fernandez Patterns of association, feeding competition and vocal communication in spider monkeys, Ateles geoffroyi , 2001 .

[15]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  W. Kinzey,et al.  Challenge of neotropical frugivory: Travel patterns of spider monkeys and bearded sakis , 1994, American journal of primatology.

[18]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[19]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[20]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[21]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[22]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[23]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[24]  R. Storn,et al.  Differential evolution a simple and efficient adaptive scheme for global optimization over continu , 1997 .

[25]  Daniel Sabatier,et al.  Diets of some French guianan primates: Food composition and food choices , 1996, International Journal of Primatology.

[26]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[27]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[28]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[29]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[30]  Raymond Chiong,et al.  Evolutionary Optimization: Pitfalls and Booby Traps , 2012, Journal of Computer Science and Technology.

[31]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[32]  K. Milton,et al.  Diet and social organization of a free-ranging spider monkey population: the development of species-typical behavior in the absence of adults , 1993 .

[33]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[34]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[35]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[36]  M. V. Roosmalen,et al.  Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (ateles paniscus paniscus linnaeus 1758) in surinam , 1985 .

[37]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[38]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[39]  R. Jeanne THE EVOLUTION OF THE ORGANIZATION OF WORK IN SOCIAL INSECTS , 2013 .

[40]  K. V. Arya,et al.  Opposition based lévy flight artificial bee colony , 2012, Memetic Computing.

[41]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: Part I-Basic Theory and Applications , 1999 .

[42]  M. Clerc A method to improve Standard PSO , 2009 .

[43]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[44]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[45]  Kusum Deep,et al.  A new crossover operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[46]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[47]  James J. Filliben,et al.  NIST/SEMATECH e-Handbook of Statistical Methods; Chapter 1: Exploratory Data Analysis , 2003 .