The Factorized Distribution Algorithm and the Minimum Relative Entropy Principle
暂无分享,去创建一个
[1] Heinz Mühlenbein,et al. The Estimation of Distributions and the Minimum Relative Entropy Principle , 2005, Evol. Comput..
[2] I. Good,et al. The Maximum Entropy Formalism. , 1979 .
[3] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[4] J. Darroch,et al. Generalized Iterative Scaling for Log-Linear Models , 1972 .
[5] Alan L. Yuille,et al. CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.
[6] Robin Höns,et al. Estimation of distribution algorithms and minimum relative entropy , 2005 .
[7] Robert J. McEliece,et al. Belief Propagation on Partially Ordered Sets , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.
[8] Yee Whye Teh,et al. On Improving the Efficiency of the Iterative Proportional Fitting Procedure , 2003, AISTATS.
[9] S. Aji,et al. The Generalized Distributive Law and Free Energy Minimization , 2001 .
[10] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[11] E. T. Jaynes,et al. Where do we Stand on Maximum Entropy , 1979 .
[12] Y. Weiss,et al. Finding the M Most Probable Configurations using Loopy Belief Propagation , 2003, NIPS 2003.
[13] Russell G. Almond. Graphical belief modeling , 1995 .
[14] David E. Goldberg,et al. Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.
[15] Heinz Mühlenbein,et al. Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.
[16] Heinz Mühlenbein,et al. Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning , 2002, Int. J. Approx. Reason..
[17] Brian W. Kernighan,et al. An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..
[18] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[19] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[20] Heinz Mühlenbein,et al. FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.
[21] S. Griffis. EDITOR , 1997, Journal of Navigation.
[22] Robert J. McEliece,et al. The generalized distributive law , 2000, IEEE Trans. Inf. Theory.
[23] Yong Gao,et al. Space Complexity of Estimation of Distribution Algorithms , 2005, Evolutionary Computation.
[24] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[25] Heinz Mühlenbein,et al. Evolutionary Algorithms and the Boltzmann Distribution , 2002, FOGA.
[26] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[27] Roberto Santana,et al. Estimation of Distribution Algorithms with Kikuchi Approximations , 2005, Evolutionary Computation.
[28] Frank Jensen,et al. Optimal junction Trees , 1994, UAI.
[29] Brian Kernighan,et al. An efficient heuristic for partitioning graphs , 1970 .
[30] T. Mahnig,et al. Mathematical Analysis of Evolutionary Algorithms , 2002 .