A circular-linear dependence measure under Johnson-Wehrly distributions and its application in Bayesian networks

Abstract Circular data jointly observed with linear data are common in various disciplines. Since circular data require different techniques than linear data, it is often misleading to use usual dependence measures for joint data of circular and linear observations. Moreover, although a mutual information measure between circular variables exists, the measure has drawbacks in that it is defined only for a bivariate extension of the wrapped Cauchy distribution and has to be approximated using numerical methods. In this paper, we introduce two measures of dependence, namely, (i) circular-linear mutual information as a measure of dependence between circular and linear variables and (ii) circular-circular mutual information as a measure of dependence between two circular variables. It is shown that the expression for the proposed circular-linear mutual information can be greatly simplified for a subfamily of Johnson–Wehrly distributions. We apply these two dependence measures to learn a circular-linear tree-structured Bayesian network that combines circular and linear variables. To illustrate and evaluate our proposal, we perform experiments with simulated data. We also use a real meteorological data set from different European stations to create a circular-linear tree-structured Bayesian network model.

[1]  Y. L. Tong The multivariate normal distribution , 1989 .

[2]  Richard A. Johnson,et al.  Some Angular-Linear Distributions and Related Regression Models , 1978 .

[3]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  Thomas E. Wehrly,et al.  Bivariate models for dependence of angular observations and a related Markov process , 1980 .

[6]  Kanti V. Mardia,et al.  A multivariate von mises distribution with applications to bioinformatics , 2008 .

[7]  David E. Tyler,et al.  Maximum likelihood estimation for the wrapped Cauchy distribution , 1988 .

[8]  A. Rényi On measures of dependence , 1959 .

[9]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[10]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[11]  Paul Levy,et al.  L'addition des variables aléatoires définies sur une circonférence , 1939 .

[12]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[13]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[14]  Christophe Ley,et al.  Modern Directional Statistics , 2017 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[17]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[18]  A. Gould A regression technique for angular variates. , 1969, Biometrics.

[19]  Alan J. Lee,et al.  Regression Models for an Angular Response , 1992 .

[20]  Shogo Kato,et al.  A distribution for a pair of unit vectors generated by Brownian motion , 2009, 0909.1221.

[21]  Shogo Kato,et al.  A Möbius transformation-induced distribution on the torus , 2015 .

[22]  Gould Al A Regression Technique for Angular Variates , 1969 .

[23]  Kanti V. Mardia,et al.  A Model for Cylindrical Variables with Applications , 1978 .

[24]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[25]  P. McCullagh Möbius transformation and Cauchy parameter estimation , 1996 .

[26]  S. P. Lloyd On a Measure of Stochastic Dependence , 1962 .

[27]  Craig A. Stow,et al.  Comparative analysis of discretization methods in Bayesian networks , 2017, Environ. Model. Softw..

[28]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[29]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[30]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[31]  Concha Bielza,et al.  Tree-Structured Bayesian Networks for Wrapped Cauchy Directional Distributions , 2016, CAEPIA.

[32]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[33]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[34]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[35]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[36]  Christophe Ley,et al.  A tractable, parsimonious and flexible model for cylindrical data, with applications , 2015, 1505.08113.

[37]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .

[38]  Kanti V. Mardia,et al.  Some Fundamental Properties of a Multivariate von Mises Distribution , 2011, 1109.6042.