Eine neue Robotergeneration für Raumfahrt, Dienstleistung und Chirurgie (A new Roboter-Generation for Space, Service and Surgery)

Zusammenfassung Häufig wird die Robotik – insbesondere die Dienstleistungs- oder Service-Robotik – in ihrer Bedeutung für das neue Jahrhundert mit der Gen- und Biotechnologie verglichen. Vor allem Japan und Korea haben sich zum Ziel gesetzt, die erwarteten Milliarden-Märkte frühzeitig für sich zu erobern. Gefragt ist eine neue Generation von Robotern mit leichten, energieoptimalen Armen und geschickten mehrfingrigen Händen, die ein kleines Trägerfahrzeug oder eine Laufmaschine nicht überlasten. Die Anforderungen der Raumfahrt an mechatronische Höchst-Integration, Extrem- Leichtbau und minimalen Energieverbrauch tragen dazu bei, diesem Technologie-Defizit zu begegnen. Die entsprechenden Entwicklungen des DLR-Instituts für Robotik und Mechatronik und ihre Anwendungsperspektiven auf die terrestrische Service- und Chirurgierobotik sind die Kernelemente dieses Beitrags. Summary Quite often robotics – particularly service-robotics – is compared with genetic- and bio-technology research concerning the impact on the new century. Japan and Korea are aiming towards capturing the billion dollar markets at an early stage. In vision is a new generation of robots incorporating lightweight, energy-optimised arms and dexterous multi-fingered hands that do not overload a small carrier vehicle or a walking mechanism. The requirements on space technology with respect to high mechatronic integration, extreme lightweight construction and minimal energy consumption help to fill this technology gap. The recent developments of DLR's Institute of Robotics and Mechatronics and the perspective of their applications for terrestrial service and surgery robots are key topics of this paper.

[1]  Alin Albu-Schäffer,et al.  On a new generation of torque controlled light-weight robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[2]  Markus Schedl,et al.  Torque-Controlled Lightweight Arms and Articulated Hands: Do We Reach Technological Limits Now? , 2004, Int. J. Robotics Res..

[3]  Gerd Hirzinger,et al.  Contact point identification in multi-fingered grasps exploiting kinematic constraints , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Christoph Borst,et al.  A Humanoid Two-Arm System for Dexterous Manipulation , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[5]  Gerd Hirzinger,et al.  Modular concepts for a new generation of light weight robots , 1994, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics.

[6]  Alin Albu-Schaffer,et al.  Comparison of Adptive and Nonadaptive Tracking Control Laws , 2002 .

[7]  Gerd Hirzinger,et al.  Fast planning of precision grasps for three-dimensional objects , 1997, Adv. Robotics.

[8]  Klaus Landzettel,et al.  Advances in orbital robotics , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Hong Liu,et al.  A mechatronics approach to the design of light-weight arms and multifingered hands , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Alin Albu-Schäffer,et al.  A passivity based Cartesian impedance controller for flexible joint robots - part I: torque feedback and gravity compensation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Ralf Koeppe,et al.  Advances in Robotics: The DLR Experience , 1999, Int. J. Robotics Res..

[12]  Gerd Hirzinger,et al.  DLR hand II: hard- and software architecture for information processing , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Alin Albu-Schäffer,et al.  Decoupling based Cartesian impedance control of flexible joint robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Gerd Hirzinger,et al.  Passivity-based Object-Level Impedance Control for a Multifingered Hand , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Gerd Hirzinger,et al.  Estimating finger contact location and object pose from contact measurements in 3D grasping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[18]  Gerd Hirzinger,et al.  Learning techniques in a dataglove based telemanipulation system for the DLR hand , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).