A model of smooth pursuit in primates based on learning the target dynamics

[1]  Mitsuo Kawato,et al.  Transformation from population codes to firing rate codes by learning: Neural representation of smooth pursuit eye movements , 2004, Systems and Computers in Japan.

[2]  Stephen G. Lisberger,et al.  A model of visually-guided smooth pursuit eye movements based on behavioral observations , 1994, Journal of Computational Neuroscience.

[3]  J. L. Gordon,et al.  A model of the smooth pursuit eye movement system , 1986, Biological Cybernetics.

[4]  A. Terry Bahill,et al.  Model emulates human smooth pursuit system producing zero-latency target tracking , 1983, Biological Cybernetics.

[5]  P. Thier,et al.  A neuronal correlate of spatial stability during periods of self-induced visual motion , 2004, Experimental Brain Research.

[6]  A. Fuchs,et al.  Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target , 2004, Experimental Brain Research.

[7]  Kikuro Fukushima,et al.  Coding of smooth eye movements in three-dimensional space by frontal cortex , 2002, Nature.

[8]  Tutis Vilis,et al.  Eye position signals modulate early dorsal and ventral visual areas. , 2002, Cerebral cortex.

[9]  K. Fukushima,et al.  Predictive responses of periarcuate pursuit neurons to visual target motion , 2002, Experimental Brain Research.

[10]  M. Kawato,et al.  Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. , 2002, Journal of neurophysiology.

[11]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[12]  M. Kawato,et al.  Change in neuronal firing patterns in the process of motor command generation for the ocular following response. , 2001, Journal of neurophysiology.

[13]  M. Kawato,et al.  Exploration of Signal Transduction Pathways in Cerebellar Long-Term Depression by Kinetic Simulation , 2001, The Journal of Neuroscience.

[14]  F. A. Miles,et al.  Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. , 2001, Journal of neurophysiology.

[15]  Stephen G. Lisberger,et al.  Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex , 2001, Nature.

[16]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[17]  M. Kawato,et al.  A mathematical analysis of the characteristics of the system connecting the cerebellar ventral paraflocculus and extraoculomotor nucleus of alert monkeys during upward ocular following responses , 2000, Neuroscience Research.

[18]  Alan L. Yuille,et al.  Probabilistic Motion Estimation Based on Temporal Coherence , 2000, Neural Computation.

[19]  D. Feldman Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[20]  S. Lisberger,et al.  Apparent motion produces multiple deficits in visually guided smooth pursuit eye movements of monkeys. , 2000, Journal of neurophysiology.

[21]  A. G. Witney,et al.  Learning and decay of prediction in object manipulation. , 2000, Journal of neurophysiology.

[22]  E. Todorov Direct cortical control of muscle activation in voluntary arm movements: a model , 2000, Nature Neuroscience.

[23]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[24]  G. Bi,et al.  Distributed synaptic modification in neural networks induced by patterned stimulation , 1999, Nature.

[25]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[26]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[27]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[28]  H. Deubel,et al.  Current Oculomotor Research , 1999, Springer US.

[29]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[30]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: center-surround interactions. , 1998, Journal of neurophysiology.

[31]  Peter E. Latham,et al.  Statistically Efficient Estimation Using Population Coding , 1998, Neural Computation.

[32]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[33]  H. J. Wyatt,et al.  Offset dynamics of human smooth pursuit eye movements: Effects of target presence and subject attention , 1997, Vision Research.

[34]  S. Squatrito,et al.  Encoding of Smooth Pursuit Direction and Eye Position by Neurons of Area MSTd of Macaque Monkey , 1997, The Journal of Neuroscience.

[35]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[36]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[37]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Richard S. Sutton,et al.  An Adaptive Sensorimotor Network Inspired by the Anatomy and Physiology of the Cerebellum , 1995 .

[39]  C. Bruce,et al.  Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. , 1994, Journal of neurophysiology.

[40]  S. Yamane,et al.  Neural activity in cortical area MST of alert monkey during ocular following responses. , 1994, Journal of neurophysiology.

[41]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[42]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[43]  G. Barnes,et al.  Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans. , 1992, Journal of vestibular research : equilibrium & orientation.

[44]  C. Bruce,et al.  Smooth-pursuit eye movement representation in the primate frontal eye field. , 1991, Cerebral cortex.

[45]  M. Pavel Predictive control of eye movement. , 1990, Reviews of oculomotor research.

[46]  Eileen Kowler Eye movements and their role in visual and cognitive processes. , 1990, Reviews of oculomotor research.

[47]  James C. Houk,et al.  An Adaptive Sensorimotor Network Inspired by the Anatomy and Physiology , 1989 .

[48]  H. Komatsu,et al.  Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. , 1989, Journal of neurophysiology.

[49]  R. Wurtz,et al.  Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. , 1988, Journal of neurophysiology.

[50]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. , 1988, Journal of neurophysiology.

[51]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[52]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[53]  E. J. Morris,et al.  Different responses to small visual errors during initiation and maintenance of smooth-pursuit eye movements in monkeys. , 1987, Journal of neurophysiology.

[54]  W. Newsome,et al.  Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. , 1987, Journal of neurophysiology.

[55]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[56]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[57]  K. Kawano,et al.  Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. , 1984, Journal of neurophysiology.

[58]  H. Sakata,et al.  Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. , 1983, Journal of neurophysiology.

[59]  S. Whittaker,et al.  Learning patterns of eye motion for foveal pursuit. , 1982, Investigative ophthalmology & visual science.

[60]  S. Yasui,et al.  Eye movements during afterimage tracking under sinusoidal and random vestibular stimulation , 1976 .

[61]  P. Bach-y-Rita,et al.  Basic Mechanisms of Ocular Motility and Their Clinical Implications , 1976 .

[62]  E. Keller Accommodative vergence in the alert monkey. Motor unit analysis. , 1973, Vision research.

[63]  P. Dallos,et al.  Learning behavior of the eye fixation control system , 1963 .

[64]  Lawrence Stark,et al.  Predictive Control of Eye Tracking Movements , 1962 .

[65]  G. Westheimer Eye movement responses to a horizontally moving visual stimulus. , 1954, A.M.A. archives of ophthalmology.