Efficient evolution of neural networks through complexification

Artificial neural networks can potentially control autonomous robots, vehicles, factories, or game players more robustly than traditional approaches. Neuroevolution, i.e. the artificial evolution of neural networks, is a method for finding the right topology and connection weights to specify the desired control behavior. The challenge for neuroevolution is that difficult tasks may require complex networks with many connections, all of which must be set to the right values. Even if a network exists that can solve the task, evolution may not be able to find it in such a high-dimensional search space. This dissertation presents the NeuroEvolution of Augmenting Topologies (NEAT) method, which makes search for complex solutions feasible. In a process called complexification, NEAT begins by searching in a space of simple networks, and gradually makes them more complex as the search progresses. By starting minimally, NEAT is more likely to find efficient and robust solutions than neuroevolution methods that begin with large fixed or randomized topologies; by elaborating on existing solutions, it can gradually construct even highly complex solutions. In this dissertation, NEAT is first shown faster than traditional approaches on a challenging reinforcement learning benchmark task. Second, by building on existing structure, it is shown to maintain an “arms race” even in open-ended coevolution. Third, NEAT is used to successfully discover complex behavior in three challenging domains: the game of Go, an automobile warning system, and a real-time interactive video game. Experimental results in these domains demonstrate that NEAT makes entirely new applications of machine learning possible.

[1]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[2]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[3]  Nolan H. Sigal,et al.  Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. , 1972, Journal of molecular biology.

[4]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[5]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[6]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  C. Radding,et al.  Homologous pairing and strand exchange in genetic recombination. , 1982, Annual review of genetics.

[8]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[9]  Ronald J. Williams,et al.  Experimental Analysis of the Real-time Recurrent Learning Algorithm , 1989 .

[10]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[11]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[12]  L. B. Almeida A learning rule for asynchronous perceptrons with feedback in a combinatorial environment , 1990 .

[13]  Peter Dayan,et al.  Optimal Plasticity from Matrix Memories: What Goes Up Must Come Down , 1990, Neural Computation.

[14]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[15]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[16]  Brad Fullmer and Risto Miikkulainen Using Marker-Based Genetic Encoding Of Neural Networks To Evolve Finite-State Behaviour , 1991 .

[17]  A. P. Wieland,et al.  Evolving neural network controllers for unstable systems , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[18]  Peter J. B. Hancock,et al.  Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[19]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[21]  D. R. McGregor,et al.  Designing application-specific neural networks using the structured genetic algorithm , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  Richard K. Belew,et al.  Evolving Aesthetic Sorting Networks Using Developmental Grammars , 1993, ICGA.

[24]  Stefano Nolfi,et al.  Auto-teaching: networks that develop their own teaching input , 1993 .

[25]  Peter J. Angeline,et al.  Competitive Environments Evolve Better Solutions for Complex Tasks , 1993, ICGA.

[26]  Byoung-Tak Zhang,et al.  Evolving Optimal Neural Networks Using Genetic Algorithms with Occam's Razor , 1993, Complex Syst..

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Francesco Mondada,et al.  Mobile Robot Miniaturisation: A Tool for Investigation in Control Algorithms , 1993, ISER.

[29]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[30]  Xiaodong Yin,et al.  A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization , 1993 .

[31]  Frédéric Gruau,et al.  Genetic Synthesis of Modular Neural Networks , 1993, ICGA.

[32]  Dirk Dickmanns,et al.  Multiple object recognition and scene interpretation for autonomous road vehicle guidance , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[33]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[34]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[35]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[36]  Risto Miikkulainen,et al.  Evolving Neural Networks to Focus Minimax Search , 1994, AAAI.

[37]  Randall D. Beer,et al.  Integrating reactive, sequential, and learning behavior using dynamical neural networks , 1994 .

[38]  Frank Dellaert,et al.  Toward an evolvable model of development for autonomous agent synthesis , 1994 .

[39]  Crossover Interactions among Niches Crossover Interactions among Niches , 1994 .

[40]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[41]  Demetri Terzopoulos,et al.  Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world , 1994 .

[42]  Rajendra Krishnan,et al.  2DELTA-GANN: A NEW APPROACH TO TRAINING NEURAL NETWORKS USING GENETIC ALGORITHMS , 1994 .

[43]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1994, Comput. Vis. Image Underst..

[44]  Vittorio Maniezzo,et al.  Genetic evolution of the topology and weight distribution of neural networks , 1994, IEEE Trans. Neural Networks.

[45]  Jeffrey L. Elman,et al.  Learning and Evolution in Neural Networks , 1994, Adapt. Behav..

[46]  Mark B. Ring Continual learning in reinforcement environments , 1995, GMD-Bericht.

[47]  John J. Grefenstette,et al.  A Coevolutionary Approach to Learning Sequential Decision Rules , 1995, ICGA.

[48]  Larry R. Medsker,et al.  Genetic Algorithms and Neural Networks , 1995 .

[49]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[50]  Xin Yao,et al.  A Preliminary Study on Designing Artiicial Neural Networks Using Co-evolution , 1995 .

[51]  Stefano Nolfi,et al.  Learning to Adapt to Changing Environments in Evolving Neural Networks , 1996, Adapt. Behav..

[52]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[53]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[54]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[55]  Lee Spector,et al.  Evolving Graphs and Networks with Edge Encoding: Preliminary Report , 1996 .

[56]  Xin Yao,et al.  Automatic modularization by speciation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[57]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 1996, Machine Learning.

[58]  Jong-Hwan Kim,et al.  Evolutionary ordered neural network with a linked-list encoding scheme , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[59]  Risto Miikkulainen,et al.  Culling and Teaching in Neuro-Evolution , 1997, ICGA.

[60]  L. Darrell Whitley,et al.  Messy Genetic Algorithms for Subset Feature Selection , 1997, ICGA.

[61]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[62]  Stefano Nolfi,et al.  God Save the Red Queen! Competition in Co-Evolutionary Robotics , 1997 .

[63]  D. Sankoff,et al.  Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. , 1997, Genetics.

[64]  Riccardo,et al.  Evolution of the Topology and the Weightsof Neural Networks using GeneticProgramming with a Dual RepresentationJo , 1997 .

[65]  David E. Moriarty,et al.  Symbiotic Evolution of Neural Networks in Sequential Decision Tasks , 1997 .

[66]  Ashwin Ram,et al.  Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces , 1997, Adapt. Behav..

[67]  Benjamin Kuipers,et al.  Map Learning with Uninterpreted Sensors and Effectors , 1995, Artif. Intell..

[68]  Richard K. Belew,et al.  Coevolutionary search among adversaries , 1997 .

[69]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[70]  M. Cohn,et al.  Hox9 genes and vertebrate limb specification , 1997, nature.

[71]  Stefano Nolfi Evolving non-trivial behavior on autonomous robots: Adaptation is more powerful than decomposition a , 1997 .

[72]  David W. Opitz,et al.  Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies , 1997, J. Artif. Intell. Res..

[73]  P. Lijnzaad,et al.  A physical map of 30,000 human genes. , 1998, Science.

[74]  Risto Miikkulainen,et al.  2-D Pole Balancing with Recurrent Evolutionary Networks , 1998 .

[75]  Xin Yao,et al.  Towards designing artificial neural networks by evolution , 1998 .

[76]  C. Lee Giles,et al.  How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies , 1998, Neural Networks.

[77]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[78]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[79]  Andrew P. Martin Increasing Genomic Complexity by Gene Duplication and the Origin of Vertebrates , 1999, The American Naturalist.

[80]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[81]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[82]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[83]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[84]  Kee-Eung Kim,et al.  Learning Finite-State Controllers for Partially Observable Environments , 1999, UAI.

[85]  Peter J. Bentley,et al.  Three Ways to Grow Designs: A Comparison of Evolved Embryogenies for a Design Problem , 1999 .

[86]  Stefano Nolfi,et al.  Duplication of Modules Facilitates the Evolution of Functional Specialization , 1999, Artificial Life.

[87]  Kristian Lindgrena,et al.  Coevolution of strategies in n-person Prisoner ' s Dilemma , 2000 .

[88]  C. Lee Giles,et al.  Talking Helps: Evolving Communicating Agents for the Predator-Prey Pursuit Problem , 2000, Artificial Life.

[89]  Reid G. Simmons,et al.  Distributed visual servoing with a roving eye , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[90]  Dario Floreano,et al.  Evolutionary robots with on-line self-organization and behavioral fitness , 2000, Neural Networks.

[91]  Christoph Adami,et al.  A Developmental Model for the Evolution of Artificial Neural Networks , 2000, Artificial Life.

[92]  Melanie Mitchell,et al.  Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work , 2000 .

[93]  James A. Reggia,et al.  Conditions Enabling the Evolution of Inter-Agent Signaling in an Artificial World , 2000, Artificial Life.

[94]  Eytan Ruppin,et al.  Emergence of Memory-Driven Command Neurons in Evolved Artificial Agents , 2001, Neural Computation.

[95]  Torsten Reil,et al.  Biologically Inspired Control of Physically Simulated Bipeds , 2001 .

[96]  Jordan B. Pollack,et al.  Pareto Optimality in Coevolutionary Learning , 2001, ECAL.

[97]  R. Watson,et al.  Pareto coevolution: using performance against coevolved opponents in a game as dimensions for Pareto selection , 2001 .

[98]  Gregory S. Hornby,et al.  Body-brain co-evolution using L-systems as a generative encoding , 2001 .

[99]  Gregory S. Hornby,et al.  The advantages of generative grammatical encodings for physical design , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[100]  John E. Laird,et al.  Human-Level AI's Killer Application: Interactive Computer Games , 2000, AI Mag..

[101]  R. Pfeifer,et al.  Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny , 2001 .

[102]  Tristan Cazenave,et al.  Generation of Patterns With External Conditions for the Game of Go , 2001 .

[103]  Naonori Ueda,et al.  Bayesian model search for mixture models based on optimizing variational bounds , 2002, Neural Networks.

[104]  Kenneth O. Stanley and Joseph Reisinger and Risto Miikkulainen,et al.  The Dominance Tournament Method of Monitoring Progress in Coevolution , 2002 .

[105]  Dario Floreano,et al.  Levels of dynamics and adaptive behavior in evolutionary neural controllers , 2002 .

[106]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[107]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[108]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[109]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[110]  Principles in the Evolutionary Design of Digital Circuits—Part I , 2004, Genetic Programming and Evolvable Machines.

[111]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[112]  Risto Miikkulainen,et al.  Evolving Neural Networks to Play Go , 2004, Applied Intelligence.

[113]  Risto Miikkulainen,et al.  Online Interactive Neuro-evolution , 2000, Neural Processing Letters.

[114]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[115]  Hans-Hellmut Nagel,et al.  Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences , 1999, International Journal of Computer Vision.

[116]  Edwin D. de Jong,et al.  The Incremental Pareto-Coevolution Archive , 2004, GECCO.

[117]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[118]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[119]  Riccardo Poli,et al.  Evolving the Topology and the Weights of Neural Networks Using a Dual Representation , 2004, Applied Intelligence.

[120]  L. Darrell Whitley,et al.  Genetic Reinforcement Learning for Neurocontrol Problems , 2004, Machine Learning.

[121]  Mitchell A. Potter,et al.  EVOLVING NEURAL NETWORKS WITH COLLABORATIVE SPECIES , 2006 .

[122]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .